Complete list

See my complete publications on Google Scholar

Selected Publications

2025

Beyond Scores: Proximal Diffusion Models
Beyond Scores: Proximal Diffusion Models

Zhenghan Fang, Mateo Diaz, Sam Buchanan, Jeremias Sulam

arXiv 2025

Diffusion ModelsGenerative AITheory

Beyond Scores: Proximal Diffusion Models

Zhenghan Fang, Mateo Diaz, Sam Buchanan, Jeremias Sulam

arXiv 2025

Diffusion ModelsGenerative AITheory

Multiaccuracy and Multicalibration via Proxy Groups
Multiaccuracy and Multicalibration via Proxy Groups

Beepul Bharti, Mary Versa Clemens-Sewall, Paul H. Yi, Jeremias Sulam

International Conference of Machine Learning 2025

ML TrustworthinessTheory

Multiaccuracy and Multicalibration via Proxy Groups

Beepul Bharti, Mary Versa Clemens-Sewall, Paul H. Yi, Jeremias Sulam

International Conference of Machine Learning 2025

ML TrustworthinessTheory

Disentangling Safe and Unsafe Image Corruptions via Anisotropy and Locality
Disentangling Safe and Unsafe Image Corruptions via Anisotropy and Locality

Ramchandran Muthukumar, Ambar Pal, Jeremias Sulam, Rene Vidal

Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR) 2025

ML Robustness

Disentangling Safe and Unsafe Image Corruptions via Anisotropy and Locality

Ramchandran Muthukumar, Ambar Pal, Jeremias Sulam, Rene Vidal

Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR) 2025

ML Robustness

Pitfalls and Best Practices in Evaluation of AI Algorithmic Biases in Radiology
Pitfalls and Best Practices in Evaluation of AI Algorithmic Biases in Radiology

Paul H. Yi,, Preetham Bachina, Beepul Bharti, Sean P. Garin, Adway Kanhere, Pranav Kulkarni, David Li, Vishwa S. Parekh, Samantha M. Santomartino, Linda Moy, Jeremias Sulam

Radiology (RSNA) 2025

Medical Imaging

Pitfalls and Best Practices in Evaluation of AI Algorithmic Biases in Radiology

Paul H. Yi,, Preetham Bachina, Beepul Bharti, Sean P. Garin, Adway Kanhere, Pranav Kulkarni, David Li, Vishwa S. Parekh, Samantha M. Santomartino, Linda Moy, Jeremias Sulam

Radiology (RSNA) 2025

Medical Imaging

Aligning Explanations with Human Communication
Aligning Explanations with Human Communication

Jacopo Teneggi, Zhenzhen Wang, Paul H Yi, Tianmin Shu, Jeremias Sulam

arXiv 2025

ML Interpretability

Aligning Explanations with Human Communication

Jacopo Teneggi, Zhenzhen Wang, Paul H Yi, Tianmin Shu, Jeremias Sulam

arXiv 2025

ML Interpretability

Bi-level Graph Learning Unveils Prognosis-Relevant Tumor Microenvironment Patterns from Breast Multiplexed Digital Pathology
Bi-level Graph Learning Unveils Prognosis-Relevant Tumor Microenvironment Patterns from Breast Multiplexed Digital Pathology

Zhenzhen Wang, Cesar A. Santa-Maria, Aleksander S. Popel, Jeremias Sulam

Patterns: Cell Press 2025 Cover feature

ML InterpretabilityBiomarker DiscoveryDigital Pathology

Bi-level Graph Learning Unveils Prognosis-Relevant Tumor Microenvironment Patterns from Breast Multiplexed Digital Pathology

Zhenzhen Wang, Cesar A. Santa-Maria, Aleksander S. Popel, Jeremias Sulam

Patterns: Cell Press 2025 Cover feature

ML InterpretabilityBiomarker DiscoveryDigital Pathology

Concept bottleneck model with zero performance loss
Concept bottleneck model with zero performance loss

Zhenzhen Wang, Aleksander Popel, Jeremias Sulam

Second Conferenceon Parsimony and Learning (CPAL 2025). 2025

ML Interpretability

Concept bottleneck model with zero performance loss

Zhenzhen Wang, Aleksander Popel, Jeremias Sulam

Second Conferenceon Parsimony and Learning (CPAL 2025). 2025

ML Interpretability

Sufficient and Necessary Explanations (and What Lies in Between).
Sufficient and Necessary Explanations (and What Lies in Between).

Beepul Bharti, Paul H. Yi, Jeremias Sulam

Second Conferenceon Parsimony and Learning (CPAL 2025). 2025

ML InterpretabilityML Trustworthiness

Sufficient and Necessary Explanations (and What Lies in Between).

Beepul Bharti, Paul H. Yi, Jeremias Sulam

Second Conferenceon Parsimony and Learning (CPAL 2025). 2025

ML InterpretabilityML Trustworthiness

2024

Testing Semantic Importance via Betting
Testing Semantic Importance via Betting

Jacopo Teneggi, Jeremias Sulam

NeurIPS 2024

ML InterpretabilityTheory

Testing Semantic Importance via Betting

Jacopo Teneggi, Jeremias Sulam

NeurIPS 2024

ML InterpretabilityTheory

Gradient-Based Saliency Maps Are Not Trustworthy Visual Explanations of Automated AI Musculoskeletal Diagnoses

Kesavan Venkatesh, Simukayi Mutasa, Fletcher Moore, Jeremias Sulam, Paul H Yi

Journal of Imaging Informatics in Medicine 2024

ML InterpretabilityBiomedical Imaging

Gradient-Based Saliency Maps Are Not Trustworthy Visual Explanations of Automated AI Musculoskeletal Diagnoses

Kesavan Venkatesh, Simukayi Mutasa, Fletcher Moore, Jeremias Sulam, Paul H Yi

Journal of Imaging Informatics in Medicine 2024

ML InterpretabilityBiomedical Imaging

Certified Robustness against Sparse Adversarial Perturbations via Data Localization
Certified Robustness against Sparse Adversarial Perturbations via Data Localization

Ambar Pal, Rene Vidal, Jeremias Sulam

Transactions on Machine Learning Research (TMLR) 2024

Certified Robustness against Sparse Adversarial Perturbations via Data Localization

Ambar Pal, Rene Vidal, Jeremias Sulam

Transactions on Machine Learning Research (TMLR) 2024

Pivotal auto-encoder via self-normalizing relu

Nelson Goldenstein, Jeremias Sulam, Yaniv Romano

IEEE Transactions on Signal Processing 2024

Sparse CodingTheory

Pivotal auto-encoder via self-normalizing relu

Nelson Goldenstein, Jeremias Sulam, Yaniv Romano

IEEE Transactions on Signal Processing 2024

Sparse CodingTheory

What's in a Prior? Learned Proximal Networks for Inverse Problems
What's in a Prior? Learned Proximal Networks for Inverse Problems

Zhenghan Fang, Sam Buchanan, Jeremias Sulam

ICLR 2024

Inverse ProblemsTheoryImaging

What's in a Prior? Learned Proximal Networks for Inverse Problems

Zhenghan Fang, Sam Buchanan, Jeremias Sulam

ICLR 2024

Inverse ProblemsTheoryImaging

2023

Estimating and Controlling for Fairness via Sensitive Attribute Predictors
Estimating and Controlling for Fairness via Sensitive Attribute Predictors

Beepul Bharti, Paul H. Yi, Jeremias Sulam

NeurIPS 2023

Estimating and Controlling for Fairness via Sensitive Attribute Predictors

Beepul Bharti, Paul H. Yi, Jeremias Sulam

NeurIPS 2023

How To Trust Your Diffusion Model: A Convex Optimization Approach to Conformal Risk Control
How To Trust Your Diffusion Model: A Convex Optimization Approach to Conformal Risk Control

Jacopo Teneggi, Matthew Tivnan, Webster J. Stayman, Jeremias Sulam

International Conference on Machine Learning (ICML) 2023

How To Trust Your Diffusion Model: A Convex Optimization Approach to Conformal Risk Control

Jacopo Teneggi, Matthew Tivnan, Webster J. Stayman, Jeremias Sulam

International Conference on Machine Learning (ICML) 2023

Fast Hierarchical Games for Image Explanations

Jacopo Teneggi, Alexandre Luster, Jeremias Sulam

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2023

Fast Hierarchical Games for Image Explanations

Jacopo Teneggi, Alexandre Luster, Jeremias Sulam

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2023

WaveSep: A Flexible Wavelet-Based Approach for Source Separation in Susceptibility Imaging

Zhenghan Fang, Hyeong-Geol Shin, Peter van Zijl, Xu Li, Jeremias Sulam

MLCN (MICCAI Workshop) 2023

WaveSep: A Flexible Wavelet-Based Approach for Source Separation in Susceptibility Imaging

Zhenghan Fang, Hyeong-Geol Shin, Peter van Zijl, Xu Li, Jeremias Sulam

MLCN (MICCAI Workshop) 2023

Understanding Noise-Augmented Training for Randomized Smoothing
Understanding Noise-Augmented Training for Randomized Smoothing

Ambar Pal, Jeremias Sulam

Transactions of Machine Learning Research (TMLR) 2023

Understanding Noise-Augmented Training for Randomized Smoothing

Ambar Pal, Jeremias Sulam

Transactions of Machine Learning Research (TMLR) 2023

Sparsity-aware generalization theory for deep neural networks
Sparsity-aware generalization theory for deep neural networks

Ramchandran Muthukumar, Jeremias Sulam

COLT 2023

Sparsity-aware generalization theory for deep neural networks

Ramchandran Muthukumar, Jeremias Sulam

COLT 2023

SHAP-XRT: The Shapley Value Meets Conditional Independence Testing

Jacopo Teneggi, Beepul Bharti, Yaniv Romano, Jeremias Sulam

Transactions of Machine Learning Research (TMLR) 2023

SHAP-XRT: The Shapley Value Meets Conditional Independence Testing

Jacopo Teneggi, Beepul Bharti, Yaniv Romano, Jeremias Sulam

Transactions of Machine Learning Research (TMLR) 2023

Medical imaging data science competitions should report dataset demographics and evaluate for bias

Sean P. Garin, Vishwa S. Parekh, Jeremias Sulam, Paul H. Yi

Nature Medicine 2023

Medical imaging data science competitions should report dataset demographics and evaluate for bias

Sean P. Garin, Vishwa S. Parekh, Jeremias Sulam, Paul H. Yi

Nature Medicine 2023

Examination-level supervision for deep learning–based intracranial hemorrhage detection at head CT
Examination-level supervision for deep learning–based intracranial hemorrhage detection at head CT

Jacopo Teneggi, Paul H. Yi, Jeremias Sulam

Radiology: Artificial Intelligence 2023 Cover feature

Examination-level supervision for deep learning–based intracranial hemorrhage detection at head CT

Jacopo Teneggi, Paul H. Yi, Jeremias Sulam

Radiology: Artificial Intelligence 2023 Cover feature

DeepSTI: Towards Tensor Reconstruction using Fewer Orientations in Susceptibility Tensor Imaging
DeepSTI: Towards Tensor Reconstruction using Fewer Orientations in Susceptibility Tensor Imaging

Zhenghan Fang, Kuo-Wei Lai, Peter van Zijl, Xu Li, Jeremias Sulam

Medical Image Analysis 2023

DeepSTI: Towards Tensor Reconstruction using Fewer Orientations in Susceptibility Tensor Imaging

Zhenghan Fang, Kuo-Wei Lai, Peter van Zijl, Xu Li, Jeremias Sulam

Medical Image Analysis 2023

Cross-modality supervised image restoration enables nanoscale tracking of synaptic plasticity in living mice
Cross-modality supervised image restoration enables nanoscale tracking of synaptic plasticity in living mice

Yu Kang T. Xu, Austin R. Graves, Gabrielle I. Coste, Richard L. Huganir, Dwight E. Bergles, Adam S. Charles, Jeremias Sulam

Nature Methods 2023

Cross-modality supervised image restoration enables nanoscale tracking of synaptic plasticity in living mice

Yu Kang T. Xu, Austin R. Graves, Gabrielle I. Coste, Richard L. Huganir, Dwight E. Bergles, Adam S. Charles, Jeremias Sulam

Nature Methods 2023

Adversarial robustness of sparse local Lipschitz predictors

Ramchandran Muthukumar, Jeremias Sulam

SIAM Journal on Mathematics of Data Science 2023

Adversarial robustness of sparse local Lipschitz predictors

Ramchandran Muthukumar, Jeremias Sulam

SIAM Journal on Mathematics of Data Science 2023

Adversarial Examples Might be Avoidable: The Role of Data Concentration in Adversarial Robustness
Adversarial Examples Might be Avoidable: The Role of Data Concentration in Adversarial Robustness

Ambar Pal, Jeremias Sulam, Rene Vidal

NeurIPS 2023

ML Robustness

Adversarial Examples Might be Avoidable: The Role of Data Concentration in Adversarial Robustness

Ambar Pal, Jeremias Sulam, Rene Vidal

NeurIPS 2023

ML Robustness

2022

Label Cleaning Multiple Instance Learning: Refining Coarse Annotations on Single Whole-Slide Images
Label Cleaning Multiple Instance Learning: Refining Coarse Annotations on Single Whole-Slide Images

Zhenzhen Wang, Carla Saoud, Sintawat Wangsiricharoen, Aaron W. James, Aleksander S. Popel, Jeremias Sulam

IEEE Transactions on Medical Imaging 2022

Digital Pathology

Label Cleaning Multiple Instance Learning: Refining Coarse Annotations on Single Whole-Slide Images

Zhenzhen Wang, Carla Saoud, Sintawat Wangsiricharoen, Aaron W. James, Aleksander S. Popel, Jeremias Sulam

IEEE Transactions on Medical Imaging 2022

Digital Pathology

Recovery and Generalization in Over-Realized Dictionary Learning

Jeremias Sulam, Chong You, Zhihui Zhu

Journal of Machine Learning Research (JMLR) 2022

Recovery and Generalization in Over-Realized Dictionary Learning

Jeremias Sulam, Chong You, Zhihui Zhu

Journal of Machine Learning Research (JMLR) 2022

Antibody structure prediction using interpretable deep learning
Antibody structure prediction using interpretable deep learning

Jeffrey A. Ruffolo, Jeremias Sulam, Jeffrey J. Gray

Patterns 2022

Antibody structure prediction using interpretable deep learning

Jeffrey A. Ruffolo, Jeremias Sulam, Jeffrey J. Gray

Patterns 2022

Entrywise Recovery Guarantees for Sparse PCA via Sparsistent Algorithms

Joshua Agterberg, Jeremias Sulam

AISTATS 2022

Entrywise Recovery Guarantees for Sparse PCA via Sparsistent Algorithms

Joshua Agterberg, Jeremias Sulam

AISTATS 2022

2021

Deciphering antibody affinity maturation with language models and weakly supervised learning

Jeffrey A. Ruffolo, Jeffrey J. Gray, Jeremias Sulam

Machine Learning for Structural Biology Workshop, NeurIPS 2021

Deciphering antibody affinity maturation with language models and weakly supervised learning

Jeffrey A. Ruffolo, Jeffrey J. Gray, Jeremias Sulam

Machine Learning for Structural Biology Workshop, NeurIPS 2021

A Geometric Analysis of Neural Collapse with Unconstrained Features

Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, Qing Qu

NeurIPS (Spotlight) 2021

A Geometric Analysis of Neural Collapse with Unconstrained Features

Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, Qing Qu

NeurIPS (Spotlight) 2021

Automated in vivo tracking of cortical oligodendrocytes
Automated in vivo tracking of cortical oligodendrocytes

Yu K. T. Xu, Cody L. Call, Jeremias Sulam, Dwight E. Bergles

Frontiers in Cellular Neuroscience 2021

Automated in vivo tracking of cortical oligodendrocytes

Yu K. T. Xu, Cody L. Call, Jeremias Sulam, Dwight E. Bergles

Frontiers in Cellular Neuroscience 2021

2020

Learning to solve TV regularized problems with unrolled algorithms

Hamza Cherkaoui, Jeremias Sulam, Thomas Moreau

NeurIPS 2020

Inverse ProblemsTheory

Learning to solve TV regularized problems with unrolled algorithms

Hamza Cherkaoui, Jeremias Sulam, Thomas Moreau

NeurIPS 2020

Inverse ProblemsTheory

Conformal Symplectic and Relativistic Optimization

Gui França, Jeremias Sulam, Daniel P. Robinson, Rene Vidal

NeurIPS 2020

Theory

Conformal Symplectic and Relativistic Optimization

Gui França, Jeremias Sulam, Daniel P. Robinson, Rene Vidal

NeurIPS 2020

Theory

Adversarial Robustness of Supervised Sparse Coding

Jeremias Sulam, Ramchandran Muthukumar, Raman Arora

NeurIPS 2020

ML RobustnessTheory

Adversarial Robustness of Supervised Sparse Coding

Jeremias Sulam, Ramchandran Muthukumar, Raman Arora

NeurIPS 2020

ML RobustnessTheory

Variations on the Convolutional Sparse Coding Model

Ives Rey-Otero, Jeremias Sulam, Michael Elad

IEEE Transactions on Signal Processing 2020

Sparse Coding

Variations on the Convolutional Sparse Coding Model

Ives Rey-Otero, Jeremias Sulam, Michael Elad

IEEE Transactions on Signal Processing 2020

Sparse Coding

Learned Proximal Networks for Quantitative Susceptibility Mapping.
Learned Proximal Networks for Quantitative Susceptibility Mapping.

Kuo-Wei Lai, Manisha Aggarwal, Peter van Zijl, Xu Li, Jeremias Sulam

MICCAI 2020

Inverse ProblemsMedical Imaging

Learned Proximal Networks for Quantitative Susceptibility Mapping.

Kuo-Wei Lai, Manisha Aggarwal, Peter van Zijl, Xu Li, Jeremias Sulam

MICCAI 2020

Inverse ProblemsMedical Imaging

2019

On Multi-Layer Basis Pursuit, Efficient Algorithms and Convolutional Neural Networks

Jeremias Sulam, Aviad Aberdam, Amir Beck, Michael Elad

IEEE Transactions on Pattern Analysis and Machine Intelligence 2019

Sparse CodingTheory

On Multi-Layer Basis Pursuit, Efficient Algorithms and Convolutional Neural Networks

Jeremias Sulam, Aviad Aberdam, Amir Beck, Michael Elad

IEEE Transactions on Pattern Analysis and Machine Intelligence 2019

Sparse CodingTheory

Multi Layer Sparse Coding: the Holistic Way

Aviad Aberdam, Jeremias Sulam, Michael Elad

SIAM Journal on Mathematics of Data Science 2019

Sparse CodingTheory

Multi Layer Sparse Coding: the Holistic Way

Aviad Aberdam, Jeremias Sulam, Michael Elad

SIAM Journal on Mathematics of Data Science 2019

Sparse CodingTheory

Improving Pursuit Algorithms Using Stochastic Resonance

Dror Simon, Jeremias Sulam, Yaniv Romano, Yue Lue, Michael Elad

IEEE Transactions on Signal Processing 2019

Sparse CodingInverse Problems

Improving Pursuit Algorithms Using Stochastic Resonance

Dror Simon, Jeremias Sulam, Yaniv Romano, Yue Lue, Michael Elad

IEEE Transactions on Signal Processing 2019

Sparse CodingInverse Problems

Adversarial Noise Attacks of Deep Learning Architectures – Stability Analysis via Sparse Modeled Signals

Yaniv Romano, Aviad Aberdam, Jeremias Sulam, Michael Elad

Journal of Mathematical Imaging and Vision 2019

Sparse CodingML Robustness

Adversarial Noise Attacks of Deep Learning Architectures – Stability Analysis via Sparse Modeled Signals

Yaniv Romano, Aviad Aberdam, Jeremias Sulam, Michael Elad

Journal of Mathematical Imaging and Vision 2019

Sparse CodingML Robustness

A Local Block Coordinate Descent Algorithm for the CSC Model

Eve Zisselman, Jeremias Sulam, Michael Elad

CVPR 2019

Sparse CodingInverse Problems

A Local Block Coordinate Descent Algorithm for the CSC Model

Eve Zisselman, Jeremias Sulam, Michael Elad

CVPR 2019

Sparse CodingInverse Problems

2018

From Local to Global Sparse Modeling

Jeremias Sulam

PhD Thesis, Technion - Israel Institute of Technology 2018

From Local to Global Sparse Modeling

Jeremias Sulam

PhD Thesis, Technion - Israel Institute of Technology 2018

Theoretical Foundations of Deep Learning via Sparse Representations

Vardan Papyan, Yaniv Romano, Jeremias Sulam, Michael Elad

IEEE Signal Processing Magazine 2018

TheorySparse Coding

Theoretical Foundations of Deep Learning via Sparse Representations

Vardan Papyan, Yaniv Romano, Jeremias Sulam, Michael Elad

IEEE Signal Processing Magazine 2018

TheorySparse Coding

Projecting onto the Multi-Layer Convolutional Sparse Coding Model

Jeremias Sulam, Vardan Papyan, Yaniv Romano, Michael Elad

International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2018

Sparse CodingTheory

Projecting onto the Multi-Layer Convolutional Sparse Coding Model

Jeremias Sulam, Vardan Papyan, Yaniv Romano, Michael Elad

International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2018

Sparse CodingTheory

Multi-Layer Convolutional Sparse Modeling: Pursuit and Dictionary Learning

Jeremias Sulam, Vardan Papyan, Yaniv Romano, Michael Elad

IEEE Transactions on Signal Processing 2018

Sparse CodingTheoryNeural Networks

Multi-Layer Convolutional Sparse Modeling: Pursuit and Dictionary Learning

Jeremias Sulam, Vardan Papyan, Yaniv Romano, Michael Elad

IEEE Transactions on Signal Processing 2018

Sparse CodingTheoryNeural Networks

2017

Working Locally Thinking Globally: Theoretical Guarantees for Convolutional Sparse Coding

Vardan Papyan, Jeremias Sulam, Michael Elad

IEEE Transactions on Signal Processing 2017

TheorySparse Coding

Working Locally Thinking Globally: Theoretical Guarantees for Convolutional Sparse Coding

Vardan Papyan, Jeremias Sulam, Michael Elad

IEEE Transactions on Signal Processing 2017

TheorySparse Coding

Maximizing AUC with Deep Learning for Classification of Imbalanced Mammogram Datasets

Jeremias Sulam, Rami Ben-Ari, Pavel Kisilev

Eurographics Workshop on Visual Computing for Biology and Medicine 2017

Medical Imaging

Maximizing AUC with Deep Learning for Classification of Imbalanced Mammogram Datasets

Jeremias Sulam, Rami Ben-Ari, Pavel Kisilev

Eurographics Workshop on Visual Computing for Biology and Medicine 2017

Medical Imaging

Dynamical system classification with diffusion embedding for ECG-based person identification

Jeremias Sulam, Yaniv Romano, Ronen Talmon

Signal Processing 2017

Signal ProcessingEKG

Dynamical system classification with diffusion embedding for ECG-based person identification

Jeremias Sulam, Yaniv Romano, Ronen Talmon

Signal Processing 2017

Signal ProcessingEKG

Convolutional Dictionary Learning via Local Processing

Vardan Papyan, Yaniv Romano, Jeremias Sulam, Michael Elad

International Conference on Computer Vision (ICCV) 2017

Convolutional Dictionary Learning via Local Processing

Vardan Papyan, Yaniv Romano, Jeremias Sulam, Michael Elad

International Conference on Computer Vision (ICCV) 2017

2016

Trainlets: Dictionary Learning in High Dimensions

Jeremias Sulam, Boaz Ophir, Michael Zibulevsky, Michael Elad

IEEE Transactions on Signal Processing 2016

Sparse CodingInverse Problems

Trainlets: Dictionary Learning in High Dimensions

Jeremias Sulam, Boaz Ophir, Michael Zibulevsky, Michael Elad

IEEE Transactions on Signal Processing 2016

Sparse CodingInverse Problems

Large Inpainting of Face Images with Trainlets

Jeremias Sulam, Michael Elad

IEEE Signal Processing Letters 2016

Inverse ProblemsSparse Coding

Large Inpainting of Face Images with Trainlets

Jeremias Sulam, Michael Elad

IEEE Signal Processing Letters 2016

Inverse ProblemsSparse Coding

Gaussian Mixture Diffusion

Jeremias Sulam, Yaniv Romano, Michael Elad

ICSEE International Conference on the Science of Electrical Engineering 2016

Inverse Problems

Gaussian Mixture Diffusion

Jeremias Sulam, Yaniv Romano, Michael Elad

ICSEE International Conference on the Science of Electrical Engineering 2016

Inverse Problems

2015

Fusion of Ultrasound Harmonic Imaging with Clutter Removal Using Sparse Signal Separation

J. Turek, J. Sulam, I. Yavne, M. Elad

ICASSP 2015

Fusion of Ultrasound Harmonic Imaging with Clutter Removal Using Sparse Signal Separation

J. Turek, J. Sulam, I. Yavne, M. Elad

ICASSP 2015

Expected Patch Log Likelihood with a Sparse Prior

J. Sulam, M. Elad

EMMCVPR 2015

Expected Patch Log Likelihood with a Sparse Prior

J. Sulam, M. Elad

EMMCVPR 2015

2014

Image Denoising Through Multi-Scale Learnt Dictionaries

J. Sulam, B. Ophir, M. Elad

ICIP 2014

Image Denoising Through Multi-Scale Learnt Dictionaries

J. Sulam, B. Ophir, M. Elad

ICIP 2014

2012

Nonlinear slight parameter changes detection: a forecasting approach

J. Sulam, G. Schlotthauer, M. E. Torres

JAIIO 2012

Nonlinear slight parameter changes detection: a forecasting approach

J. Sulam, G. Schlotthauer, M. E. Torres

JAIIO 2012