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Abstract

Signal models have always been central to the development of new and better algorithms. This

thesis is concerned with sparse representations modeling, which builds upon the observation

that natural signals can be well approximated by a few elements from a vast collection of atoms,

commonly termed dictionary. Over the last decade, many works have studied the problem of

retrieving the sparse set of atoms that best represent a given measurement signal, and proposing

ways of adapting and training this model from real-world data. The latter task, known as the

dictionary learning problem, has empowered sparse enforcing methods to achieve remarkable

results in many different fields from signal and image processing and restoration to higher level

tasks such as detection, classification and several other machine learning applications.

This new sparsity-inspired model, while greatly successful, has typically been applied to small

and local signal patches due to the computational constraints that solving these problems entails.

More precisely, various computationally efficient algorithms were suggested for solving global

problems by addressing a collection of relatively independent local sub-problems. This paradigm

results in a series of inconsistencies, however, which we loosely refer to as a local-global gap, with

both practical and theoretical implications. In this thesis, we will first propose different and

complementary strategies to significantly alleviate several of these issues by deploying multi-scale

analysis tools and global regularization techniques, such as the expected patch log-likelihood and

Laplacian regularization. We will then circumvent these inconsistencies altogether by tackling

the problem of learning a sparse representation model for high dimensional signals. Building

on the double sparsity model and a cropped wavelets dictionary, this will take us to propose a

new dictionary learning algorithm resulting in large trainable atoms, dubbed Trainlets. This

approach will not only deliver state-of-art results in dictionary learning, but will also enable us

to address problems and applications that are simply out of the scope of local methods.

Towards the second part of this thesis, we will consider the Convolutional Sparse Coding

(CSC) model, which will be shown to be a (somewhat surprising) answer for the local-global

gap. This relatively new model, however, comes with a loose and hardly applicable theoretical

analysis. We will expand much of the classical sparse representations theory to the convolutional

case, providing uniqueness, stability and recovery guarantees based on a new local measure of

sparsity. On the one hand, this will give a theoretical justification to abundant work dealing with

algorithmic solutions to this problem. On the other hand, our approach will guide the development

of new pursuit and dictionary learning algorithms that, while solving global problems, think

and work locally. Towards the last part, and motivated by a very recent connection between
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CSC and the rising topic of deep learning, we will analyze the Multi-Layer Convolutional Sparse

Coding model, which proposes a global construction composed of a cascade of convolutional

layers. We will propose a sound pursuit algorithm for signals following these model assumptions

by adopting a projection approach, providing new and improved bounds on the stability of its

solution and analyzing different algorithmic alternatives. A dictionary learning algorithm will

be naturally derived from our study, enabling to train the nested convolutional filters from real

data, and employing them in several applications.

This thesis condenses a tour of different alternatives that seek to better serve global problems

while leveraging the powerful locally sparse modeling framework. The outcomes of this work are

several new algorithms, practical solutions, novel models and theoretical results that, I hope and

believe, will empower the next generation of signal modeling.
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Chapter 1

Introduction

Signal models are the expression of our partial understanding of the manifestation of natural

phenomena. They intend to condense, in a few mathematical rules, the basic characteristics

that describe all there is to know about the signal of interest. Clearly, the accuracy of the

characterization is problem-dependent, and more accurate descriptions will commonly lead to

more complex models. These mathematical constructions, while imperfect, provide progressively

better comprehension of real world signals, and have enabled the development of practical

applications such as signal and image restoration, detection and classification, among a myriad

of other problems.

The concept of parsimony, on the other hand, has been known to thinkers and scholars

for a long time. It suffices to refer to Occam’s Razon [Sob15] to understand that simplicity

and parsimony where admired qualities among philosophers and early scientists. This concept

inevitably influenced physics and the modern sciences, from Newton [Haw03] to Solomonof [RH11].

Eventually, around two or three decades ago, the advent of Wavelets begun to influence signal

and image modeling, bringing about the understanding that natural signals can be (well)

described by a linear combination of only a few building blocks or components. Since then,

much progress has been achieved by sparse representations in terms of a redundant collection

of signal atoms, commonly known dictionary [BDE09]. Backed by elegant theoretical results,

this model has led to a series of works dealing either with the problem of the pursuit of such

decompositions, or with the design and learning of better atoms from real data [RBE10]. The

latter problem, termed dictionary learning, empowered sparse enforcing methods to achieve

remarkable results in many different fields from signal and image processing [RPE14,MBS09] to

machine learning [JLD13,PCCP14,SPC14].

This new transform model is typically accompanied by hard optimization problems and

algorithms that have a high computational complexity [RZE08]. These reasons, together with the

curse of dimensionality, causes that whenever this model is deployed to real-world applications,

this sparse prior is not enforced on the global signal or image but rather on small local portions, or

patches, from it [Ela10]. This local paradigm, while powerful and computationally effective, has

important limitations that arise from modeling a global signal by simply operating on it locally.

These limitations, loosely referred to as the local-global gap, are both practical and theoretical.
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In restoration applications, this results in texture-like artifacts, particularly noticeable in smooth

regions. From an estimation perspective, local neighboring regions do not provide a coherent

estimation of their overlap. Could we circumvent these problems by somehow learn a global

(but perhaps restricted) model? More importantly, these methods have overlooked a central

question: what is the actual global model imposed on signals when working under this local

sparse modeling framework? These issues will be our guiding points throughout this work.

1.1 Local Restoration Methods

Our starting point is the SparseLand model and its application to image restoration problems

based on a local modeling strategy. Image restoration is any task that aims to recover an image

that has undergone some damaging process, usually modeled as resulting from a degradation

operator applied to the image with the addition of acquisition noise. Some typical image

restoration problems include image denoising, where only noise is added to the original image;

image inpaiting, where some pixels or even areas of the image have been completely removed by

the degradation operator; and image debluring, resulting in an image that looks out of focus or

otherwise blurred.

All these are ill-posed problems, and so it becomes necessary to include some prior information

or assumptions into the restoration formulation. This is exactly the role of the signal model:

incorporating prior knowledge or beliefs about the unknown signal. In this context, the restoration

task consists of obtaining an estimate of the image which is properly related to the measurements

but that is likely under the imposed model. In one very popular form, this process reduces –

either implicitly or explicitly – to the Maximum a Posteriori (MAP) estimator of the unknown

image under some prior. In the last two decades, much effort has been put into developing

better models for image restoration, some of these being based on adaptive smoothness [TM98],

low-rankness [CLMW11], self-similarity [DFKE06], sparsity [EA06], and combinations of some

of these [MBS09, PSWS03]. These priors have become very popular as they often result in

computationally effective algorithms with state-of-the-art performance.

1.2 Upgrading Local Restoration Methods

However effective, most state of the art methods share the limitation of working on a single scale

and operating on patches of the same size. This local strategy of treating image patches has

inherent limitations in terms of the amount of information available per local estimate. Our first

contribution [SOE14] tackles this particular point, presenting a patch-based denoising algorithm

relying on a sparsity-inspired model (K-SVD [AEB06]) while leveraging a multi-scale analysis

framework. This allows us to overcome some of the disadvantages of the popular algorithms by

considering patches of different effective size in a natural and computationally practical way. We

propose an algorithm in which we look for a sparse representation under an already sparsifying

wavelet transform by adaptively training a dictionary on the different decomposition bands of

the noisy image, leading to a multi-scale extension of the K-SVD denoising algorithm [EA06].
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We then combine the single-scale and multi-scale approaches by merging both outputs by a

weighted joint sparse coding strategy. Our experiments on natural images indicate that the

proposed method is competitive with state of the art algorithms in terms of PSNR, while giving

superior results as to visual quality.

From a Bayesian point of view, most algorithms that operate locally invest their effort on

maximizing an a posteriori estimator with respect to some sophisticated prior on the extracted

patches, and eventually obtain the final image simply by averaging these processed patches back

together. This averaging process, while practical, leads to eventual patches that are in fact

not likely under the employed model. Recently, the Expected Patch Log Likelihood (EPLL)

method was introduced in [ZW11], arguing that the chosen model should be enforced on the

final reconstructed image patches instead. In the context of a Gaussian Mixture Model (GMM),

this idea has been shown to lead to state-of-the-art results in image denoising and debluring. In

our second contribution [SE15], we combine the EPLL framework with a sparse-representation

prior. Our derivations lead to a close yet extended variant of the popular K-SVD algorithm. We

show that in order to effectively maximize the EPLL the denoising process should be iterated,

and we present a method that intrinsically determines the corresponding local noise thresholds

in order to improve the image estimate. Our results show a notable improvement over K-SVD in

image denoising and inpainting, achieving comparable performance to that of EPLL with GMM.

More broadly, all these local denoising algorithms (GMM, EPLL, K-SVD, among others)

can be understood as global pseudo-linear operators. These algorithms – acting on the entire

noisy image – can be thought of having a two-step implementation process: first building a

linear operator based on some non-linear decision rules (e.g., which atoms to employ for each

patch) and then simply applying this operator to the noisy image in order to obtained the

result. This is the approach we take in [SRE16] when studying the resulting operator from the

Gaussian Mixture Model (GMM) [PSWS03]. Focusing then on the denoising formulation, we

incorporate a graph-based regularization term leveraging the corresponding GMM graph that

emerges from this denoiser [Mil13]. From a variational interpretation, the resulting algorithm

extends and improves the non-local diffusion algorithm [GO07] by replacing the Non-Local Means

kernel [BCM05] with a GMM one. Our results indicate that this approach, termed Gaussian

Mixtures Diffusion (GMD), consistently improves over both the original GMM scheme and the

non-local diffusion algorithm. Furthermore, GMD is competitive or even better than the state

of-the-art method of EPLL.

1.3 High Dimensional Dictionary Learning

Clearly, the local-global gap arises from employing local models to address a global problems.

What if one could employ a global model directly? This direction of work is indeed appealing,

as it avoids all the problems discussed in the section above. Such a strategy is not as trivial

as it might seem, however, since obtaining a model for increasingly higher dimensional signals

suffers from the curse of dimensionality, and imposing or training it from real data can result in

prohibitive computational costs.

5

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 P

h.
D

. T
he

si
s 

 P
H

D
-2

01
8-

01
.r

ev
is

ed
 -

 2
01

8



In another contribution [SOZE16], we show how to efficiently handle bigger dimensions

and go beyond the small patches in sparsity-based signal and image processing methods. We

build our approach based on a new cropped Wavelet decomposition, which enables a multi-scale

analysis with virtually no border effects. We then employ this as the base dictionary within a

double sparsity model to enable the training of adaptive dictionaries. To cope with the increase

of training data, while at the same time improving the training performance, we present an

Online Sparse Dictionary Learning (OSDL) algorithm to learn this model effectively, enabling it

to handle millions of examples and resulting in large adaptable atoms that we coin Trainlets.

The reported results show that not only this approach provides state of the art performance

in dictionary learning, but it also allows sparsity-based methods to tackle new problems that

remained unreachable until now. For example, in [SE16], we address the specific problem of

inpainting large regions of face images. This is a challenging task, as attempting to solve it

with local methods is generally infeasible: for the inpainting to be successful, one must have a

global model of how a face should look like, what facial features such images contain, etc. We

avoid these problems by employing the above Trainlets approach to learn a global dictionary for

this class of images. When this model is deployed with a sparse prior, we obtain very plausible

reconstructions that outperform competing methods.

1.4 Convolutional Sparse Coding

While the above global method is very effective in modeling relatively large image patches, or

even global images from a similar class, it is still too limited when attempting to model arbitrarily

large natural images. An elegant and more profound solution to the above-described local-global

dichotomy is given by the Convolutional Sparse Coding (CSC) model. This model assumes that

the global dictionary is structured as the concatenation of banded Circulant matrices, and in

doing so it provides a global model with a shift-invariant local prior. Although several works

have presented algorithmic solutions to the global pursuit problem under this new model, no

truly-effective guarantees are known for the success of such methods.

Moving to our fifth contribution [PSE17a], we address the theoretical aspects of the sparse

convolutional model, providing the first meaningful answers to questions of uniqueness of solutions

and success of pursuit algorithms. To this end, we generalize mathematical quantities, such as

the `0 norm, the mutual coherence and the Spark, to their counterparts in the convolutional

setting, which intrinsically capture local measures of the global model. We further extend the

analysis to a noisy regime, thereby considering signal perturbations and model deviations. We

address questions of stability of the sparsest solutions and the success of pursuit algorithms, both

greedy and convex. Classical definitions such as the RIP are generalized to the convolutional

model, and existing notions such as the ERC are connected to our setting. On the algorithmic

side, we propose a simple yet effective approach to solve the global pursuit problem by using

simple local processing, thus offering a first of its kind bridge between global modeling of signals

and their patch-based local treatment.
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1.5 Multi-Layer CSC

While the CSC model has gained increasing attention, a multi-layer (ML) extension of this model

was very recently proposed in [PRE17]. Most interestingly, this ML-CSC model consisting of a

cascade of convolutional sparse layers, provides a new interpretation of Convolutional Neural

Networks (CNNs). Under this framework, the computation of the forward pass in a CNN is

equivalent to a pursuit algorithm aiming to estimate the nested sparse representation vectors –

or feature maps – from a given input signal. These results are encouraging, as they show for the

first time stability guarantees for a problem for which the forward pass provides an approximate

solution. Despite having served as a pivotal connection between CNNs and sparse modeling,

a deeper understanding of the ML-CSC is still lacking: there are no pursuit algorithms that

can serve this model exactly, nor are there conditions to guarantee a non-empty model. While

one can easily obtain signals that approximately satisfy the ML-CSC constraints, it remains

unclear how to simply sample from the model and, more importantly, how one can train the

convolutional filters from real data.

In a last contribution of this thesis [SPRE17], we propose a sound pursuit algorithm for

the ML-CSC model by adopting a projection approach. We provide new and improved bounds

on the stability of the solution of such pursuit and we analyze different practical alternatives

to implement this in practice. We show that the training of the filters is essential to allow for

non-trivial signals in the model, and we derive an online algorithm to learn the dictionaries from

real data, effectively resulting in cascaded sparse convolutional layers. Last, but not least, we

demonstrate the applicability of the ML-CSC model for several applications in an unsupervised

setting, providing competitive results to state-of-the-art work in the deep-learning arena. This

last work represents a bridge between matrix factorization, sparse dictionary learning and sparse

auto-encoders, and we analyze these connections in detail.

1.6 Thesis Structure

The organization of this thesis follows, to a large extent, the organization of this introductory

chapter. In addition, each chapter is roughly organized following the corresponding related

publications.

We will begin by providing background material on Sparse Representation modeling in a

general sense in Chapter 2, introducing relevant pursuit algorithms and theoretical guarantees.

We will further introduce the problem of dictionary learning and describe a few popular and

recent algorithms for this task. We will then move to the novel part of this work, starting

by addressing image processing restoration problems in Chapter 3, focusing particularly on

image denoising. We will present three strategies to alleviate some of the issues arising from

the local-global gap while still working on small image patches. Chapter 4 will be concerned

with introducing our approach for high dimensional dictionary learning with Trainlets. We

will naturally derive border-effects-free cropped wavelets, introduce the learning algorithm and

finally study the performance of this approach on several image processing problems, including
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the inpainting of large face images.

We will then undertake a systematic study of the CSC model in Chapter 5, where we will

provide new theoretical guarantees for the optimization problems involved and for the algorithms

that attempt to solve them. We will then extend this analysis to the Multi-Layer version of the

CSC in Chapter 6, providing new and tighter bounds for the recovery of signals satisfying these

model assumptions. We will introduce a learning algorithm to adapt the nested filters from real

data, and demonstrate the model on several applications.

We will lastly conclude in Chapter 7, where we will comment on open questions and working

directions that arise from the works compiled in this thesis.

1.7 Notation

This thesis is compiled based on the results from several publications, often treating different

models and applications. Nevertheless, we will strive to maintain a consistent notation throughout

this document whenever possible. We will generally refer to vectors with bold lowercase letters

to differentiate them from matrices that will be denoted by bold uppercase letters, and from

scalar quantities, in non-bold letters. The notation employed in Chapter 5 will represent an

exception to this general rule, as we will employ both lower and uppercase bold letters for local

and global vectors, respectively. We will make this distinction precise at that point.

While each chapter will employ notation specific to each topic, we will typically refer to

signals (or images) by the vectors y,x and z, while denoting v or n measurement noise or model

deviations. Throughout this thesis, we will employ n to depict the signal dimension of local

patches, and N to refer to the global dimension. The number of atoms, dj , in a dictionary D

will be denoted by m. The remaining notation will be specified when needed.
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Chapter 2

Preliminaries on Sparse Modelling

Chapter Abstract

Sparse representations modeling assumes that a natural signal can be well described by a

linear combination of only a few basic signal components, or atoms, represented as columns

from a redundant matrix, termed dictionary. The problem of searching for this sparse set of

building blocks, while being NP-hard in general, can be addressed by a variety of approximation

algorithms with provable performance bounds. When coupled with different approaches that

allow for learning the dictionary from real data, this model provides excellent performance in

a variety of signal and image processing applications. In this chapter we review the basics of

sparse representation modeling, assesing the type of guarantees that can be claimed and the

typical approaches to deploy this model to real data.
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2.1 Sparse Solutions to Redundant Systems of Equations

The benefits of having a representation where most of the information is concentrated on only

a small part of our data have been known for decades. Such representations, where most of

its entries are zero except for only a few of them, are called sparse. Sparse signals – or signals

belonging to the SparseLand model – are such that can be represented or well approximated by

a linear combination of only a few signal elements, called atoms. Given a collection of atoms,

represented by the matrix D and termed dictionary, one can represent an n−dimensional signal

x by

x = Dγ

where D ∈ Rn×m, γ ∈ Rm, and ||γ||0 � n, where the l0 pseudo-norm1 counts the number of

non-zero coefficients in γ. The dictionary is usually redundant, i.e. m > n, and while this choice

ruins the benefit of orthogonality between the atoms in D, it enables very sparse representation

vectors γ.

2.2 Sparse Coding

Clearly, if m > n and D is a full-rank matrix, there exist infinite representations γ that can

generate x. We therefore regularize this problem by searching for the sparsest of all these

representations, yielding a formulation known as sparse coding, or pursuit. This pursuit problem

can be formally posed as follows:

(P0) : min
γ
||γ||0 s.t. x = Dγ. (2.1)

Given the non-convexity (and highly discontinous) `0 norm, this problem is NP hard in

general [DMA97]. Nevertheless, several results have shed light on the circumstances under which

a unique solution can be claimed. These guarantees are typically given in terms of properties

of the dictionary D, such as the Spark, defined as the minimum number of linearly dependent

columns in D [DE03]. Formally,

σ(D) = min
γ
‖γ‖0 s.t. Dγ = 0, γ 6= 0.

Based on this property, a solution obeying ‖γ‖0 < σ(D)/2 is necessarily the sparsest one [DE03].

Unfortunately, this bound is of little practical use, as computing the Spark of a matrix is a

combinatorial problem – just as hard as solving the problem in Equation (2.1), and infeasible in

practice.

Other guarantees are given in terms of the mutual coherence of the dictionary, µ(D). This

1From this point onward, we will refer to `0 norm as norm, in a slight abuse of nomenclature.
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measure quantifies the similarity of atoms in the dictionary, defined in [DE03] as:

µ(D) = max
i 6=j

|dTi dj |
‖di‖2 ‖dj‖2

.

Unlike the Spark, this quanatity is easily computable. A relation between the Spark and the

mutual coherence was shown in [DE03], stating that σ(D) ≥ 1 + 1
µ(D) . This, in turn, enables

the formulation of a practical uniqueness bound guaranteeing that γ is the unique solution of

the P0 problem if:

‖γ‖0 <
1

2
(1 + 1/µ(D)) . (2.2)

Due to the combinatorial nature of these problems, the usual way to tackle such a pursuit

is to approximate its solution instead of finding it exactly. Two approaches are possible:

either minimizing the problem in (2.1) with a greedy strategy, or else relaxing the non-convex

l0 norm by some convex alternative such as the popular l1 norm. Within the first family

of methods, the Orthogonal Matching Pursuit (OMP) [PRK93] has shown to yield a good

compromise between accuracy and complexity, and it has become a popular option. On the

other hand, FOCUSS [GR97], shrinkage algorithms [BD08,Ela06] and other convex optimization

techniques [Tro06] enable to approximate the solution of the problem above in the l1 case.

Interestingly, both families of methods have been proven to recover the true solution of the P0

problem if the representation vector is sparse enough. This sparsity (or rather, cardinality) bound

depends on the mutual coherence of the dictionary just as before [DET06,Tro04,DE03,GN03]

and detailed in Equation (2.2).

In real world applications, due to noisy measurements and model imperfections, the idealistic

setting portrayed above is not directly applicable. Consider one is given the measurements

y = Dγ + n, where n is a nuisance vector of bounded energy, ‖n‖2 ≤ ε. In this case, one can

extend the P0 problem to consider these signal perturbations and enforcing the model only

approximately, obtaining:

(P ε0) : min
γ
‖γ‖0 s.t. ‖Dγ − y‖2 ≤ ε. (2.3)

Unlike the noiseless case, given a solution to this problem, one can not claim its uniqueness

but instead can guarantee that it will be close enough to the true vector γ that generated

the signal y. This kind of stability results have been derived in recent years by leveraging the

Restricted Isometry Property (RIP) [CT05]. A matrix D is said to have a k-RIP with constant

δk if this is the smallest quantity such that

(1− δk)‖γ‖22 ≤ ‖Dγ‖22 ≤ (1 + δk)‖γ‖22,

for every γ satisfying ‖γ‖0 = k. Based on this property, it was shown that assuming γ is

sparse enough, the distance between γ and the solution to the P ε0 problem is bounded [Ela10].

Similar stability claims can be formulated in terms of the mutual coherence also, by exploiting

its relationship with the RIP property. For example, from [Ela10], if γ̂ is the solution to the

11

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 P

h.
D

. T
he

si
s 

 P
H

D
-2

01
8-

01
.r

ev
is

ed
 -

 2
01

8



problem in (2.3), and if ‖γ‖0 = k ≤ 1
2(1 + 1/µ(D), then

‖γ̂ − γ‖22 ≤
4ε2

1− (1− 2k)µ(D)
.

Success guarantees of practical algorithms, such as the Orthogonal Matching Pursuit (OMP)

and the Basis Pursuit Denoising (BPDN), have also been derived under this regime. In the

same spirit of the aforementioned stability results, both approaches where shown to recover a

solution close to the true sparse vector as long as some sparsity constraint, relying on the mutual

coherence of the dictionary and the noise energy, is met [Tro04,DET06].

Another useful property for analyzing the success of pursuit methods, initially proposed

in [Tro04], is the Exact Recovery Condition (ERC). Formally, one says that the ERC is met for

a support T with a constant θ whenever

θ = 1−max
i/∈T
‖D†T di‖1 > 0,

where we have denoted by D†T the Moore-Penrose pseudoinverse of the dictionary restricted to

support T , and di refers to the ith atom in D. Assuming the above is satisfied, the stability of

both the OMP and BP was proven in [Tro06]. Moreover, in an effort to provide a more intuitive

result, the ERC was shown to hold whenever the total number of non-zeros in T is less than a

certain number, which is a function of the mutual coherence.

2.3 Dictionary Learning

Clearly, the choice of the dictionary is a central issue as the ability to obtain a sparse representation

for a given signal will depend on how well the respective atoms can represent it. Initially,

analytically defined dictionaries were – and still are – used for sparse coding [CDS01]. These

dictionaries are defined in terms of algorithms or transformations rather than explicit matrices,

and as such are have a very efficient implementation. Common examples of these include

the Discrete Cosine Transform [Jai79], wavelets [Mal08], contourlets [DV02], shearlets [K+12],

among other. However, even though some of these analytical constructions are optimal (in an

approximation rate sense) for certain classes of functions, the mathematical rules by which they

are defined might not necessarily provide the most sparsifying transform for real data.

A better alternative is to train the dictionary from real data. In this problem, the objective

is to obtain the most representative set of atoms such that they enable a good (i.e., sparser)

representation for many real cases. Consider one gathers a collection of N training examples

arranged in a matrix Y ∈ Rn×N . The dictionary learning problem can then be posed as

minimizing a reconstruction term, subject to the sparsity of each representation vector and a

constraint on the atoms (to resolve a norm ambiguity):

min
D,Γ
||Y −DΓ||2F s.t.

{
||γi||0 ≤ k ∀i
||dj ||2 = 1 ∀j

, (2.4)
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where Γ ∈ Rm×N are the corresponding sparse vectors, ordered column wise.

This problem is highly non-convex, not only for inheriting the `0 norm of the sparse coding

problem, but also because of the multiplication of the factors. Many algorithms have been

proposed to minimize the above objective, and though different, they generally follow an

alternating minimization strategy. Under this iterative framework, at each tth iteration, on

frizzes one variable (say, the current estimate Dt−1), and then minimizes the cost in (2.4) just

with respect the sparse codes Γt. This is nothing but the pursuit problem we commented on

the previous subjection for a number of N signals. Again, greedy approaches and relaxation

methods can be employed for this stage.

Once the matrix Γt has been updated, one keeps this variable fixed and minimizes the cost

with respect to the dictionary D. In other words, and up to the norm constraint (which is easily

amendable with a subsequent projection) the problem reduces to:

min
D
||Y −DΓt||2F . (2.5)

It is in this step that most approaches differ from one another. For example, in one of its earliest

forms (the MOD algorithm from [EAH00]) the matrix D was simply found by the least-squares

solution,

Dt = YΓt
+
.

This whole process is then iterated until convergence, or until a sufficient representation error

has been obtained.

More sophisticated approaches have been proposed. Among them, the K-SVD algorithm

[AEB06] has been extremely popular in a myriad of different applications. The main characteristic

of this approach is to employ a sequential atom-wise update of the dictionary. This way, one is

interested in minimizing the cost in (2.5) only with respect to the, say, jth atom. One can write

this problem as

min
dj
||Ej − djΓ

T
j ||2F ,

where Ej = Y−
∑

i 6=j diΓ
T
j is the error term of the jth atom and ΓTj denotes the jth row of the

matrix Γ. This problem has a solution in terms of the SVD decomposition of the error matrix

Ej – thus, the name of the algorithm – providing a rank-1 approximation to Ej However, in

order to maintain the sparsity of Γ, this decomposition is performed not on the entire error

matrix but rather on a reduced version of it, containing only those signals that employ the atom

dj in their decomposition.

Before moving on, we comment on a popular alternative method, the Online Dictionary

Learning (ODL) algorithm by [MBPS10]. Both of the above methods (K-SVD and MOD) are

batch learning algorithms: the entire set of training examples is needed in order to perform a

dictionary update step. This approach can be prohibitive in high dimensional scenarios or in

cases with a very large dataset. The ODL proposes a solution that works in an online regime,

by minimizing a quadratic surrogate of the expected loss function. Generally speaking, this

algorithm also alternates between sparse coding and a dictionary update stage, but it does so
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one sample at a time. At iteration t, one first solves the following pursuit for the tth signal

example yt

γt = arg min
γ

1

2
‖yt −Dγ‖22 + λ‖γ‖1,

solved in practice with the LARS algorithm [EHJ+04]. Then, the update of D is driven by the

surrogate loss

min
D

1

t

t∑
i=1

(
1

2
||yi −Dγi||22 + λ‖γi‖1

)
.

The ODL algorithm searches for the dictionary that minimizes the cost above in a block-coordinate

descent manner, which results in a closed-form update that leverages the past information of

previously seen samples, and it does so in an efficient way by keeping two auxiliary matrices.

After adding a few modifications (like managing mini-batches, scaling past data and pruning

unused atoms), this algorithm has shown state-of-the-art performance in a number of different

applications [MBPS09,MBPS10].

2.4 Sparse Modeling and Inverse Problems

Inverse problems in image processing consist of recovering an original image that has been

degraded. Denoising, debluring and inpainting are specific and common such examples, in which

one is given the measurements y, generally modeled as

y = Ax + n, (2.6)

where A is a known linear2 operator and n represents measurement noise, assumed to be

independent and normally distributed. Put formally, these problems attempt to estimate the

underlying image x given the measurement y. Since these restoration problems are ill-posed,

it becomes necessary to include image priors as regularizers, which results in developing a

Maximum a Posteriori (MAP) estimator for the unknown image x̂. This can be formulated as

an optimization problem where we look for an estimate which is close enough to the measured

image while being likely under this prior. Most state of the art methods employ, either implicitly

of explicitly, some prior knowledge of this form [EA06,PSWS03,MBS09,DFKE06].

In the field of sparse representations, this restoration task can be generally formulated as

follows. Considering the denoising case for simplicity (i.e., A = I), and letting Pi denote a

patch-extraction operator that extracts an n-dimensional patch from y, one is usually interested

in an optimization problem like the following [EA06,MESM08]:

min
x,{γi},D

1

2
||x− y||22 + λ

∑
i

1

2
||Dγi −Pix||22 + µi||γi||0,

In words, this loss searches for an estimate x closed to y such that every patch from it has an

2While we will restrict our study to known (and linear) degradation operators, unknown degradation operators
have also been considered in the literature, for example in [SLE15].
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approximation in terms of sparse vectors γi and dictionary D.

Noticing the similarities with the dictionary learning problem studied above, this is a

generalization of it where all training examples come from a real (high-dimensional) image.

Therefore, one can employ the same alternating minimization approach to approximate the

solution of this problem as well. In practice, this reduces to taking all overlapping patches Pix,

and then iterating between sparse coding and dictionary updates. Once the iterates converge,

the patches are finally merged back together by averaging. When the update of the dictionary is

done with an SVD step, this results in the K-SVD denoising algorithm [EA06].

Is this optimal? Why should we reconstruct the global image only once? what are really the

model assumptions imposed on the global image x? We will gradually answer these questions in

the coming chapters.
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Chapter 3

Upgrading Local Methods

Chapter Abstract

Over the last decade, a number of algorithms have shown promising results in removing additive

white Gaussian noise from natural images, and though different, they all share in common a patch

based strategy by locally denoising overlapping patches. While this decreases the complexity of

the problem, it also causes noticeable artifacts when dealing with large smooth areas. In this

chapter we present two different patch-based denoising algorithms relying on a sparsity-inspired

model (K-SVD) that significantly alleviate these problems. The first one employs a multi-scale

analysis framework, in which we look for a sparse representation under an already sparsifying

wavelet transform by adaptively training a dictionary on the different decomposition bands of

the noisy image itself, leading to a multi-scale version of the K-SVD algorithm. The second

approach focuses on a relatively recent idea, the Expected Patch Log Likelihood (EPLL). This

framework argues that the chosen model should be enforced on the final reconstructed image

patches, and not just on the intermediate ones. We will show how to combine the EPLL with

a sparse-representation prior, and our derivations will lead to a close yet extended variant of

the popular K-SVD image denoising algorithm. Finally, we study the global properties of the

denoising operator resulting from the GMM denoising algorithm, and we leverage it to employ a

Laplacian regularization. This method shares similarities with variational approaches, and can

be thought of as a generalization of the non-linear diffusion algorithm. In all cases, we will see

how local patch-based algorithms can be boosted to better serve global restoration problems.
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3.1 Local Priors and Image Restoration

Inverse problems in image processing consist of recovering an original image that has been

degraded. Denoising, debluring and inpaiting are specific and common such examples. Put

formally, these problems attempt to recover an underlying image x given the measurement y

such that

y = Ax + n, (3.1)

where A is a known linear operator and n represents measurement noise. In dealing with this

problem, it is common to work with image priors as regularizers and develop a Maximum a

Posteriori (MAP) estimator for the unknown image x̂. This can be formulated as an optimization

problem where we look for an estimate which is close enough to the measured image while being

likely under this prior. Most state of the art methods employ, either implicitly of explicitly, some

prior knowledge in the form of smoothness [TM98], self-similarity [DFKE06], sparsity [EA06],

and combinations of some of these [MBS09,PSWS03]. Learning specifics priors from real data, by

adapting them to the image and problem at hand, has shown to enable better performance under

this approach [MBPS09,RB09]. However, this learning process is computationally expensive

and it is usually restricted to small dimensions, which leads naturally to the modeling of small

image patches [AEB06,WF07].

When deploying a sparse enforcing prior, as briefly mentioned at the end of Chapter 2, this

can be done in terms of the following optimization problem,

min
x,{γi},D

1

2
||y −Ax||22 +

λ

2

∑
i

||Dγi −Pix||22 + µi||γi||0.

This expression seeks for an underlying image x that would be close to y if one applies the

degradation operator A, and such that every patch from it, Pix, can be expressed as Dγi for a

sparse vector γi. We make use of the linear operator Pi that extracts a small image patch of

length n (typically 8× 8 - 11× 11) from an image of dimension N . In addition, one minimizes

the expression with respect to the dictionary D as well, adapting the model to the data.

This problem is highly non-smooth and non-convex. The popular K-SVD algorithm [EA06]

minimizes the expression above by taking an alternating minimization approach: first fixing the

dictionary and the target image and optimizing with respect to the sparse vectors γi. Then,

keeping these fixed and updating the dictionary D. One might repeat this process several times,

until fixing those and updating the image x. The loss above is quadratic with respect to x, and

so this step simply amounts to aggregating the image patches and averaging with appropriate

weights.

This local strategy, while very effective both in terms of computational complexity and

restoration performance, is known to cause significant artifacts in the estimated images. In fact,

these problems are not unique to sparse-enforcing methods as they appear in practically all

restoration method that employ a patch-based approach. This can be clearly seen in Figure 3.1,

were we depict a natural image contaminated with Gaussian noise of standard deviation of 35,
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Figure 3.1: One image from the dataset in [oCD] contaminated with Gaussian noise of σ = 35
(left), and the denoising results by the state-of-the-art method of BM3d (right) [DFKE07] with

PSNR = 33.16.

and the results obtained by the state-of-the-art algorithm BM3D [DFKE07]. As one can see,

despite the PSNR measure being considerably good (33.16 dB), the resulting image contains

severe texture-like artifacts, particularly noticeable in smooth areas of large images – which,

ironically, are often not appreciated in the smaller and popular images used in computer vision

community. These artifacts are mainly caused by a lack of agreement of the local (per patch)

estimates of the image value at that locations. This is the problem we intend to solve in the

works presented in this Chapter.

3.2 Multi-Scale Sparse Modeling and Restoration

An appealing direction to globalize patch-based algorithms is through a multi-scale approach.

Indeed, working at different scales can provide a broader analysis of image patches, forcing

them to consider more global information. This is the approach we took in [SOE14], where we

proposed to merge the K-SVD denoising algorithm [EA06] with a wavelet analysis, in a similar

way to the approach taken in [OLE11]. This leads to an effective sparse decomposition of the

image content using different scale atoms in a natural way. As a result, the potential of the

K-SVD denoising algorithm is exploited beyond the single scale limitations, reaching state of

the art results. In this section we describe this idea in detail, tie it and contrast it to existing

work, and demonstrate the effectiveness of the proposed scheme.

3.2.1 Related Work

The idea of combining dictionary learning with a multi-scale analysis framework is not new.

In [SO02], the authors proposed to train wavelet coefficients with a sparsity inducing prior on a

wavelet pyramidal decomposition structure, achieving slightly better results for compression.

Later, the authors in [MSE07] used different size patches taken from a quadtree structure to train

a multi-scale dictionary, in a first extension of the K-SVD algorithm to a multi-scale scheme.
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The work presented in [OLE11] introduced the construction of true multi-scale dictionaries

by learning patch based atoms in the analysis domain of the wavelet transform. In this case, the

resulting dictionary appears as the multiplication of a wavelet synthesis matrix with a learnt

dictionary in the wavelet domain, i.e., D̃ = WSD, where WS is the synthesis matrix of a wavelet

(inverse) transform. However, choosing an orthogonal wavelet with periodic extension enables the

authors to work in the analysis domain instead, by solving the following optimization problem:

min
D,x
||WAy −DΓ||2F subject to ||γi||0 ≤ k, ∀i,

where WA is the analysis operator (wavelet transform) matrix. This expression suggests to adapt

the atoms to sparsely represent the wavelet coefficients of the different training examples. In this

sense, the expression represents a slight abuse of notation as WAy denotes small dimensional

patches taken from the wavelet coefficients of the image y, arranged column-wise. Moreover, the

authors proposed to train different sub-dictionaries Db per band by employing K-SVD on 8× 8

patches of the wavelet sub images. This simple scheme allows to work with different sized atoms,

since a patch in a first decomposition level implies an effective patch of four times its area in the

image domain. Once the collection of sub-dictionaries is trained, the authors in [OLE11] use a

global framework for the sparse coding stage, where the patches from different scales compete for

additional coefficients selecting the one that gives the most profit in terms of the residual energy,

with a global variant of the OMP algorithm.

All these approaches have looked for a better representation of some class of data or images in

terms of some dictionary. As such, they fail to treat the denoising task competitively, as indeed

demonstrated in [OLE11]. In [EA06], the K-SVD denoising algorithm was formally derived

by proposing a global image prior that forces patch-based local sparsity over patches in every

location of the image. The problem is solved iteratively using an error threshold for the sparse

coding which depends on σ, the noise standard deviation, treating each patch independently.

We will make use of this concept and extend it to a multi-scale framework.

3.2.2 Our Contribution

In this work we propose to continue and extend the work in [OLE11], and tackle specifically the

denoising problem. In [OLE11] the authors have shown an example of a naive denoising through

M-term approximation, using a global pursuit. The results reported in this method were not

competitive with the single-scale K-SVD. In this section we propose to adapt the multi-scale

sub-dictionaries to the noisy image itself and treat the pursuit locally. This resembles the work

in [EA06], but in a multi-scale scenario. Each band of the decomposition is treated separately,

training a subdictionary for each band, which is then used to denoise the corresponding wavelet

coefficients. In a final stage, the multi-scale K-SVD and the traditional (single-scale) K-SVD

denoised images are combined though a weighted joint sparse coding in order to benefit from

the advantages that each bring. This last step allows us to maximize the information shared

between the two images, and obtain a better estimate for the original signal.
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3.2.3 Multi-scale K-SVD Denoising

Consider a noisy image y, its wavelet transform as a collection of band images yWb = (WAy)b,

and its estimated denoised versions x̂Wb , b = 1, ..., L = 3S + 1, with S decomposition levels.

Generalizing the work in [EA06], we propose a global maximum a posteriori (MAP) estimator

for denoising the image in the wavelet domain as

min
γi,b,Db,x

W
b

λ

2
||yWb − xWb ||22 +

∑
i

µi,b||γi,b||0 +
∑
i

||Dbγi,b −Pi,bx
W
b ||22, ∀b

where xi,b is the sparse vector for the (i)−patch in the decomposition band b, Pi,b the patch-

extraction operator acting on the sub-image xWb , and λ is a penalty parameter. This optimization

problem can be solved iteratively by first considering a fixed set of dictionaries Db and obtaining

the vectors γi,b by any pursuit method. Then the sub dictionaries are updated using a K-SVD

step. These steps are repeated for a fixed number of iterations. Finally, we update xWb by

x̂Wb =

(
λI +

∑
i

PT
i,bPi,b

)−1(
λyWb +

∑
i

PT
i,bDbγi,b

)
.

After the different sub band images have been denoised in the wavelet domain, the multi-scale

denoised image is obtained by applying the inverse wavelet transform. Note that by working on

patches of the same size in all decomposition levels, we consider different-scale effective patches

in the image domain. This gives our algorithm a more global outlook than that of the regular

K-SVD denoising algorithm, and involves essentially the same computational complexity, plus

the forward and backward wavelet transform. The complexity analysis detailed in [OLE11] is

still valid here.

3.2.4 Fusing Single and Multi-Scale Results

After this multi-scale K-SVD denoising stage, we go one step further. While working on the

wavelet coefficients on the different scales 1, 2, . . . , S, we miss considering the scale 0. Following

this motivation, we propose to merge the outcome of the original (single-scale) K-SVD denoised

image x̂ss with the output of the multi-scale K-SVD algorithm proposed here, x̂ms. Both of

these have some remaining noise and different artifacts, but correspond to the same underlying

image. We aim to recover the information common to both of them by a weighted joint sparse

coding, as motivated by [YQR13] and shown in Fig. 3.2. Consider each patch in the single

scale and multi-scale images given by yss and yms, respectively. We concatenate corresponding

patches of both images with a weighting factor β as ỹ = [ yTms
√

1 + β , yTss
√

1− β ]T ∈ R2n.

We may then use the dictionary given by A = [ DT
√

1 + β , DT
√

1− β ]T ∈ R2n×m to obtain

the sparse vector α ∈ Rm by the OMP algorithm. Finally, the denoised patch will be given by

ẑ = Dα/
√

2, in order to preserve the initial energy.

As we will see later, the multi scale K-SVD algorithm outperforms the single scale K-SVD

specially in the presence of high noise due to the increasing patch-like artefacts, which the multi
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x

Figure 3.2: Joint sparse coding stage of the Fused K-SVD denoising algorithm. β1 =
√

1 + β,
β2 =

√
1− β.

scale approach is more robust to. This indicates that β should be close to 1 in such cases, and

close to 0 when the noise level is lower. One could just propose a function β = f(ση) accordingly,

or choose an adaptive method that optimizes this parameter for each patch. For the sake of

simplicity we consider here a linear function of the initial noise level, from β = 0 for σ = 0 to

β = 0.9 for σ = 50. Certainly other choices are possible, and the implications of this choice will

be commented later on.

3.2.5 Experiments

In this section we present the results of a denoising experiment on landscape images from the

online NOAA library [oCD]. We chose these images as they contain large scenery areas that are

poorly treated by typical patch-based denoising methods. One of this images is depicted in the

top left corner of Fig.3.4. Fifteen images from this dataset, size 870×1360, were contaminated

by white Gaussian noise with zero mean and variable standard deviation σ. For the multi-scale

decomposition we used a discrete Meyer wavelet, with 2 decomposition levels. By choosing a

unitary transform, the stoping criteria for the sparse coding stage in the denoising algorithm is

simply ε = c · σ, where c = 1.15 following [EA06].

We evaluate our denoising results with two image quality measures: the popular Peak Signal

to Noise Ratio (PSNR) and the Structural Similarity Index (SSIM) [WBSS04]. While simple and

practical, the PSNR relies only on the absolute difference pixel by pixel, and does not provide

a good signal fidelity measure [WB09]. As such, its ability to compare images from a human

perception point of view is poor. The SSIM is somehow a more complete image quality measure,

which builds upon the idea that human perception is highly adaptive to structural information

from images and visual scenes [WBSS04]. We include in the results those obtained by the BM3D

algorithm [DFKE06], computed with the code made available by the authors, and with their

recommended parameters. We also compare our performance against the regular single-scale
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Figure 3.3: Denoising results by the K-SVD [EA06], BM3D [DFKE06], multi-scale K-SVD and
Fused K-SVD algorithms, averaged over 15 testing images from the NOAA database [oCD].

Left: PSNR gain with respect to K-SVD. Right: SSIM gain with respect to K-SVD.

K-SVD. Note that all three methods use 8× 8 patches.

We may also benefit from choosing an appropriate initial dictionary [EA06]. To this end, we

trained a single-scale and a multi-scale dictionary on 20 natural images (outside the above set of

test images), for the single-scale and multi-scale versions of the K-SVD algorithm, respectively.

The same single scale initial dictionary was later used to merge the final outcome of the Fused

K-SVD algorithm, as described in the previous section. In this case we use OMP with an error

threshold of ε = 0.1 · ση, where this factor has been chosen empirically, accounting not only for

the remaining noise but also for the difference in the artefacts of the two images.

In Fig. 3.3 we present the averages over all testing images for the different algorithms,

relative to that of K-SVD. The multi-scale K-SVD outperforms the single-scale K-SVD in almost

the whole range of noise variance, and the Fused K-SVD and BM3D present the best results,

with the latest being slightly higher in terms of PSNR. Note that the last weighted joint sparse

coding stage enables an extra boost, and the full fused algorithm improves the results by 0.2 -

0.3 dB compared to the plain multi-scale K-SVD. Turning to the SSIM results, the artefacts

on the smooth areas in the regular K-SVD denoised images are strongly penalized by this

measure. Multi-scale K-SVD and Fused K-SVD seem to be the best, with our methods slightly

outperforming BM3D. Fusion gives no gain with respect to this measure. In Fig. 3.4 we depict

the results of the K-SVD, BM3D and Fused K-SVD on the example image.

The reason for this difference in both measures should not be surprising. While BM3D makes

little mistakes in terms of absolute value, these errors are more noticeable when there are large

smooth areas, which causes the annoying texture artefacts that can be seen in the images in Fig.

3.4. It is in these areas where our method shows its greatest benefits. The coding of the deeper

decomposition levels implies choosing big atoms yielding nicely codded smooth patches. These

atoms are treated considering a more global approach than just looking at a 8× 8 patch in the
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Figure 3.4: One image from the dataset in [oCD], and its denoising results (noise level ση = 35).
Top left: original image. Top right: K-SVD (PSNR = 31.01, SSIM = 0.857). Bottom left:

BM3D (PSNR = 33.16, SSIM = 0.923). Bottom right: Fused K-SVD algorithm (PSNR = 33.16,
SSIM = 0.940). Note the artefacts in the single scale patch based methods.

image domain. This makes the method more robust to higher noise levels, where the texture

artefacts become stronger. However, this advantage comes at the cost of losing some details in

the sharp edges of the image. The absolute error at these points are slightly higher that those

made by BM3D, as noted by the PSNR results.

To finish this section, we have a word about the standard images such us Lena, Barbara, etc.

In these cases the performance of the Fused K-SVD algorithm is between 0.3-0.4 dB (PSNR)

and 0.002-0.01 (SSIM) lower than BM3D. Note that these images are small (512 × 512) and

hardly present any smooth areas of considerable size. Even in these images, however, there is a

notable improvement over the regular K-SVD in both measures (up to 0.55 dB in PSNR and

0.035 in SSIM).

3.3 Expected Patch Log Likelihood

We now leave behind the multi-scale analysis approach, and focus in the formulation of the

restoration problem instead. As we saw, image restoration methods typically work by breaking

the image into small overlapping patches, solving their MAP estimate, and tiling the results
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Figure 3.5: Sub images extracted from the denoising results of the image shown in Fig. 3.4, by
the K-SVD [EA06] (left), the BM3D (center) and by the fused K-SVD method (right).

back together by averaging them [EA06,DFKE06,BCM05]. Recently, Zoran and Weiss [ZW11]

proposed a general framework based on the simple yet appealing idea that the resulting final

patches should be likely under some specific prior, and not the intermediate ones. Their approach

is based on maximizing the Expected Patch Log Likelihood (EPLL) which yields the average

likelihood of a patch on the final image under some prior. This idea is general in the sense that

it can be applied to any patch-based prior for which a MAP estimator can be formulated. In

particular, the authors in [ZW11] employed the classic Gaussian Mixture Model prior achieving

state of the art results in image denoising and deblurring.

As we have discussed in Chapter 2, the idea that a natural signal or image patch can be well

represented by a linear combination of a few atoms from a dictionary is a very strong prior. This

leads to the natural question, could we use the EPLL framework with a sparsity-inspired prior?

If so, how is this related to existing methods that explicitly target this problem and what is there

to gain from this approach? In this section we explore and formally address these questions,

showing that indeed benefit can be found in employing EPLL with a patch sparsity-based prior.

We thus begin this section by briefly reviewing the EPLL framework as described in [ZW11].
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Given an image x, the Expected Patch Log Likelihood under some prior p is defined as

EPLLp(x) =
∑
i

log p(Pix),

where Pi extracts the ith patch from x. Therefore, given the corruption model in Eq. (3.1) we

can propose to minimize the following cost function:

fp(x|y) =
λ

2
||Ax− y||22 − EPLLp(x),

where the first term represents the log likelihood of the image. To get around the hard

optimization of this function, the authors in [ZW11] propose to use a Half Quadratic Splitting

strategy by defining auxiliary patches {zi} for each patch Pix, and then minimizing

cp,β(x, {zi}|y) =
λ

2
||Ax− y||22 +

∑
i

β

2
||Pix− zi||22 − log p(zi) (3.2)

iteratively, while increasing the value of β. Note that for β →∞, zi → Pix, so this parameter

controls the distance between the auxiliary patches and the patches of the image x. For a fixed

value of β, the cost function is again broken into a two step inner minimization: first fix {zi}
and solve for x by

x =

(
λATA + β

∑
i

PT
i Pi

)−1(
λATy + β

∑
i

PT
i zi

)
. (3.3)

Then, fix x and solve for {zi} by solving the MAP estimate for each patch under the prior in

consideration. This process should be repeated 4-5 times, before increasing β and repeating the

whole process again. Each time, the patches are taken from the image estimate at each iteration.

Within the EPLL scheme, the choice of β is crucial. In [ZW11] the authors set this parameter

manually to be 1
σ2 [1, 4, 8, 16, 32, . . . ], where σ is the noise standard deviation. In the same work

it is also suggested that β could be determined as β = 1
σ2 , where σ is estimated in every iteration

by an off-the-shelf white Gaussian noise estimator.

3.4 EPLL with a Sparse Prior

In the original formulation, Zoran and Weiss propose to use a Gaussian Mixture Model (GMM)

prior which is learnt off-line from a large number of examples. In their case, the MAP estimator

for each patch is simply given by the Wiener filter solution for the Gaussian component with

the highest conditional weight [ZW11]. However, the EPLL approach is a generic framework

for potentially any patch-based prior. We now turn to explore the formulation of an equivalent

problem with a sparsity inducing prior.
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3.4.1 Cost function formulation

Consider the signal z = Dγ, where D is a redundant dictionary of size n×m (n < m), and the

vector γ is sparse; i.e., ||γ||0 � n, where the l0 pseudo-norm || · ||0 basically counts the non zero

elements in γ. Assuming that this is the model we impose on our patches zi, Eq. (3.2) becomes

cµ,β(x, {γi}|y) =
λ

2
||Ax− y||22 +

∑
i

β

2
||Dγi −Pix||22 + µi||γi||0. (3.4)

In this case, µi reflects the trade-off between the accuracy of the representation and the sparsity

of γi. For the case β = 1, this last expression corresponds exactly to the formulation of the

K-SVD denoising algorithm in [EA06], where A = I. In this work, Elad and Aharon proposed to

use a block-coordinate minimization that starts by fixing x = y, and then seeking the optimal

γi solving the MAP estimator for each patch:

γ̂i = arg min
γ

µi||γi||0 + ||Dγi −Pix||22. (3.5)

Though this problem is NP-hard in general, its solution can be well approximated by greedy or

pursuit algorithms [DET06]. In particular, the Orthogonal Matching Pursuit (OMP) [Tro04] can

be used with the noise energy as an error threshold to yield an approximation of the solution to

Problem (3.5), and we employ this method in our work due to its simplicity and efficienty [RZE08].

This way, µi is handled implicitly by replacing the second term by a constraint of the form

min
γ
||γ||0 subject to ||Dγ −Pix||22 ≤ ncσ2, (3.6)

where c is a constant factor set to 1.15 in [EA06]. Given the estimated sparse vectors {γ̂i},
the algorithm proceeds by updating for the unknown image x which results in an equivalent

expression to that in Eq. (3.3) - for a specific value of β. When denoising is done locally (training

the dictionary on the corrupted patches) the dictionary gets updated together with the sparse

vectors by using a K-SVD step. This adaptive method that trains the dictionary on the noisy

image itself has proven to be better than using a dictionary trained offline.

The initial claim in [EA06] is that the above block-coordinate minimization should be iterated.

In practice, however, repeating this process is problematic since after updating x, the noise

level has changed and it is spatially varying. Therefore, the sparse coding stage has no known

thresholds to employ. Thus, the algorithm in [EA06] does not iterate after updating x.

Increasing β, as practiced in [ZW11], forces the distance ||Dγi − Pix||2 to be smaller.

Therefore, iterating the above algorithm for increasing values of β is equivalent to iterating the

process described for the K-SVD with smaller thresholds. As we see, the algorithm proposed

in [EA06] applies only the first iteration of the EPLL scheme with a sparse-enforcing prior,

therefore losing important denoising potential. A synthetic example is shown in Fig. 3.6, where

we compare the algorithms in [EA06] and [ZW11] with the method proposed in this section.

We now turn to address the matter of the threshold design for later stages of the K-SVD in

order to practice the EPLL concept in an effective way.
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Original Image Noisy Image. PSNR = 18.59 dB

K−SVD. PSNR = 34.45 dB EPLL + KSVD. PSNR = 42.26 dB EPLL + GMM. PSNR = 37.72 dB

Figure 3.6: Denoising of a synthetic image (σ = 30). A similar demonstration was presented
in [ZW11], showing the benefits of the EPLL framework under a GMM approach. Note the

texture-like resulting artifacts in the result by K-SVD. This problems is notably reduced by the
EPLL with a Sparse Prior, the method we present in this work. We include for comparison the

result by [ZW11]. The evolution of the Peak Signal to Noise Ratios are depicted in Fig 3.9.

3.4.2 Sparse coding thresholds

Consider the threshold in the sparse coding stage, at each iteration k, to be ν2
k . Naturally, in the

first iteration of the process that aims to minimize Eq. (3.4) we set this threshold to be exactly

the noise energy σ2 for all patches; i.e. ν2
1 = σ2. In the following iterations, however, instead of

trying to estimate the remaining noise with an of-the-shelf algorithm, we propose an intrinsic

alternative by using the information we already have about each patch.

Consider the general problem of estimating the remaining noise after applying K-SVD on

the noisy image; i.e., the first iteration of our method. From a global perspective, the estimated

image can be expressed as

x̂ =

(
λATA +

∑
i

PT
i Pi

)−1(
λAT +

∑
i

PT
i DSiD

+
Si

Pi

)
y,

where Si denotes the support of the sparse vector γ̂i chosen in the OMP, and DSi is the set of

the corresponding atoms in the dictionary. Leaving aside the selection of the support of each
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sparse vector, we can represent this operation by a linear operator as

x̂ = L(x + n). (3.7)

Assuming for a moment that x ≈ Lx, we could express the remaining noise as nr = Ln,

from which we could obtain the full covariance matrix as Cov(nr) = σ2LLT . Then, we could

either take into consideration the full covariance matrix, or make the simplifying assumption

of white noise by considering just the diagonal of Cov(nr). Though appealing, this approach

does not work in practice because ||x̂− Lx||2 is considerably large, and thus the estimate of the

remaining noise is considerably low. Also, note that L is a banded matrix of size N2×N2, where

N is the number of pixels, and so the estimation of its covariance matrix is computationally

intractable for practical purposes.

We thus turn to a similar but local alternative that will enable a practical solution. Each

patch consists of the true underlying vector z0i and a noise component vi, zi = z0i + vi. Given

the chosen support Si, ẑi is obtained as a projection onto the span of the selected atoms:

ẑi = DSiD
+
Si

zi = DSiD
+
Si

(z0i + vi) .

Assuming now that z0i ≈ DSiD
+
Si

z0i (if the correct support of the signal was chosen by the

OMP), the contribution of the noise to the patch estimate would be given by v̂ri = DSiD
+
Si

vi.

This is an analogue assumption to that made for Eq. (3.7), but now for each patch instead of

the global image. This way, considering the covariance matrix of the remaining noise Cov(v̂ri ),

the mean squared error estimate at the ith patch and iteration k will be given by 1
n tr{Cov(v̂ri )},

leading to

(
σ̂ki

)2
= |Si|

ν2
k

n
.

Therefore, the estimate of the remaining noise in each patch is simply proportional to the number

of atoms used for that patch. Of course, the remaining noise is no longer white after the back

projection step, but we make this assumption in order to simplify further derivations.

Generalizing this patch analysis to the entire image, we can estimate the average remaining

noise in the image x by performing an estimate in the spirit of Eq. (3.3), tilling back and

averaging the local estimates as

Rk =
λν2

kI +
∑

i P
T
i 1
(
σ̂ki
)2

λν2
kI +

∑
i P

T
i Pi

= Φ
(

(σ̂ki )2
)
, (3.8)

where the operator Φ(·) relocates the local estimates σ̂ki with the corresponding weighting. This

way, Rk stands for an estimation of the energy of the remaining noise pixel-wise, equivalent –

but not equal, due to our simplifying assumptions – to the diagonal of Cov(nr). An example is

shown in Fig. 3.7 for the popular image Lena. We see that Rk provides a fair estimate of the

information in the diagonal of the full covariance matrix of the remaining noise Cov(nr), and
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Figure 3.7: Left: plot of the diagonal of the covariance matrix Cov(nr) after the first iteration
of denoising the image Lena (σ = 20). Center: the corresponding plot of the estimated Rk in

Eq. (3.8), and right: the corresponding average of the standard deviation per patch of the true
error image.

that it is closer to the average of the standard deviation per patch of the true error image. The

reader should also note that computing Rk is considerably cheaper than the computation of

the operator in (3.7), since we only compute the local covariance matrices and their weighted

average, and the matrix in the denominator of Eq. (3.8) is a diagonal one. Therefore we use Rk

to derive the threshold for the next iteration.

From this point two possibilities arise: use Rk to evaluate a local patch-based noise energy,

eventually denoising each patch with a different threshold, or finding a new global and common

threshold for all the patches. The first option, while elegant, is slightly more complex, as you

cannot benefit from fast (batch) sparse coding implementations that require all signals to employ

the same error threshold. In addition, this option was found not to yield significant improvements

when compared to the second and simpler approach. Thus, in the following we adopt the later

global alternative.

The reader should bare in mind that the thresholds should tend to zero as we iterate,

corresponding to β → ∞. Certainly, this implies that our thresholds will not reflect the real

remaining noise. As an example, in Fig. 3.8 we present the evolution of the PSNR by the

proposed method for the image Lena for different thresholds. We see that if the threshold is not

changed with the iterations, the PSNR of the resulting image x decreases after the first iteration.

On the other hand, if we set the threshold to be the variance of the real remaining noise (by

having access to an oracle and the original image), the PSNR initially increases but eventually

decreases since the threshold do not tend to zero. We include for comparison the results of our

threshold-setting method.

This way, in what follows we propose to use an heuristic that provides decreasing thresholds

and which has been proven to be robust. In the subsequent iterations, we set the threshold ν2
k

to be the mode of the values in Rk . Furthermore, we have found that the multiplication by a

constant factor δ improves the performance in our method. To this end, assuming independence

between the remaining noise and the patch estimate, and considering the residual per patch
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Figure 3.8: PSNR evolution of the EPLL scheme with a sparse-representation prior for
denoising the image Lena (σ = 20) and three different threshold settings: a) using a constant

threshold for all the iterations (equal to the initial noise energy σ2); b) using an oracle threshold
by setting it to be the variance of the real error image (having access to the original image); and

c) our threshold setting method.

ri = zi− ẑi, we have that σ̃2
i = σ2−V ar(ri)1. With these estimates we can perform an analogue

of Eq. (3.8) and obtain its mode, ν̃2. We then define the factor δ = ν̃2/ν2
k , and set the thresholds

for the next iteration to be ν2
k = δ ·mode(Rk). A full description of our algorithm is depicted in

Algorightm 3.1. This way, one can think of the effective σk+1 to be given by
√
νkδ.

In the following iterations the assumption about the independence between the remaining

noise and the patch estimate will be very week, and so σ̃2
i will not be accurate. Thus, δ is

determined after the first iteration only and kept fixed for the subsequent steps, while the

estimate ν2
k provides decreasing estimates every time. An example of the obtained ν2

k ’s can be

seen in Fig. 3.9.

3.4.3 Results

To gain some insight into the performance of our method and as a motivating example, in

Fig. 3.6 we present the denoising results on a synthetic image obtained by the regular K-SVD

algorithm, and the one achieved by applying the EPLL approach with the sparse-enforcing prior.

A similar demonstration was presented in [ZW11], and we include the results of this method as

well. The K-SVD denoised image presents texture artifacts common to patch-based algorithms,

while in the image denoised with our method the final patches are far more likely under the

prior that we try to learn from the image itself.

Fig. 3.9 depicts the evolution of the PSNR of the denoised image in each iteration for this

experiment. Note that given a fixed dictionary, solving the MAP estimate for each patch with a

1The variance is calculated as V ar(r) = 1
n−1

∑
j (rj − r)2, where r is the mean of r.
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Algorithm 3.1 EPLL with a Sparse Prior, given the noisy image y with a noise standard
deviation of σ and an initial dictionary D0.

Initialization: x = y. D = D0, δ = 1, k = 1, ν2
k = σ2.

for OuterIter = 1 : 3− 4 do

- {Dk+1,xk+1} = argmin
γi,D,x

λ||xk−y||22+
∑

i ||Dkγi−Pix
k||22+µi||γi||0, by K-SVD with error threshold

ν2k

- get local estimates
(
σ̂ki
)2

= |Si|
ν2k
n , ∀i

- get global estimate Rk = Φ
(
(σ̂ki )2

)
with Eq. (3.8)

if k = 1 then
- ν2

k+1 = mode(Rk)
- σ̃2

i = σ2 − V ar(ri), ∀i
- ν̃2 = mode

(
Φ(σ̃2

i )
)

- δ = ν̃2/ν2
k+1

end

- ν2
k+1 = δ ·mode(Rk)

- k = k + 1

end

Output: x,D.

sparse prior implies applying OMP on each of them. This corresponds to the EPLL+OMP curve.

On the other hand, we could minimize Eq. (3.6) w.r.t D as well by applying a K-SVD step,

updating the dictionary as well as the sparse vectors; this is the curve depicted as EPLL+K-SVD.

The constant dotted line corresponds to the original K-SVD algorithm. Note that the result

after the first iteration in our method is worse than the one obtained by K-SVD where c = 1.15.

Choosing c = 1 in our case, however, enables further improvement as we proceed maximizing the

Expected Patch Log Likelihood. Notice also that our method converges in considerable fewer

iterations than the method of [ZW11]. The right side of Fig. 3.9 shows the evolution of the

thresholds νk used in the successive iterations, as well as the values 1/
√
β used by EPLL-GMM.

The improvement obtained by training the dictionary in each iteration of our method is

both important and intuitive. It is known that applying K-SVD on a noisy image achieves good

denoising results but yields somewhat noisy atoms [EA06]. By training the dictionary D in the

progressively cleaner estimates x we obtain cleaner and more well defined atoms, which are later

used to perform further denoising. In the top row of Fig. 3.10 we present 8 atoms trained on a

noisy version of the image Lena after the first iteration, while the lower row shows the same

atoms after 4 iterations.

3.4.4 Inpaiting

We next present results on image inpainting. In this particular application of image restoration,

the signal is the outcome of a linear operator that deletes a number of pixels from the original
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Figure 3.9: Left: PSNR evolution by EPLL with a sparsity inducing prior on the synthetic
image in Fig. 3.6, compared to the original K-SVD algorithm [EA06] and the EPLL-GMM
of [ZW11]. Right: sequence of thresholds νk determined by the proposed method and the

equivalent 1/
√
β by the method of [ZW11].

image x, plus the measurement noise. By considering a sparse prior on the original signal, we

can formulate an equivalent problem to that of Eq. (3.4), where A is the missing-pixels mask.

The corresponding cost function can be minimized in a block coordinate manner, coding for the

unknown sparse representation and updating the dictionary. In this case, however, the threshold

in the OMP has to consider only the energy of existing pixel in each patch [MESM08]. This

again represents the first iteration of the Half Splitting strategy proposed in [ZW11], and we may

perform the next iterations by estimating the remaining noise as explained above. Furthermore,

after the first iteration our estimate includes values of the missing pixel. We can then make

use of the previous denoising strategy to tackle the next iteration, by having knowledge of the

supports used to inpaint each patch, as it was previously explained.

Table 3.1 shows the results on inpainting the popular images peppers and Lena with 25%,

Missing Pixels 25% 50% 75%

K-SVD 29.67 28.81 27.92 27.27 23.64 23.86

EPLL+K-SVD 29.71 28.85 28.18 27.39 23.81 24.07

Table 3.1: Inpaiting results in terms of Peak Signal to Noise Ratio (PSNR) for 25%, 50% and
75% missing pixels for the images peppers (left subcolumns) and Lena (right subcolumns), with

additive white Gaussian noise (σ = 20).
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Figure 3.10: Atoms from a dictionary trained on a noisy version of the image Lena. The top
row corresponds to the atoms after the first iteration of our method (essentially, after applying
K-SVD), while the lower row corresponds to the same atoms after 4 iterations of the EPLL with

a sparsity enforcing prior.

50% and 75% missing pixels, with additive white Gaussian noise (σ = 20). As it can be seen,

the EPLL scheme leads to a slight improvement in the K-SVD inpainting results, with increased

effect for higher missing pixels rates. The same concept could be applied to more sophisticated

algorithms that use a sparsity-based prior, such as the state-of-the-art method of [RPE14].

3.4.5 Denoising

We conclude this section by presenting results on denoising of 12 images from the Kodak database,

for different noise levels. We compare here the performance of the K-SVD denoising algorithm

in [EA06] and our approach of the EPLL framework with a sparse prior (EPLL-K-SVD, where

the dictionary is also updated in each iteration). In all cases we performed 4 iterations of this

method, as this was found to be a convenient compromise between runtime and performance.

For both K-SVD methods, an initial dictionary with 1024 atoms was trained on overlapping 8×8

patches from 9 training images using K-SVD. We include for completion the results achieved by

the EPLL with a Gaussian Mixture Model (GMM) as the image prior from [ZW11].

In Fig. 3.11 we present the relative increase in PSNR, averaged over all 12 images. The EPLL

with a Sparse enforcing Prior shows a clear improvement over the regular K-SVD. Furthermore,

the complete implementation of the denoising algorithm closes the gap between the original

K-SVD and EPLL-GMM, having comparable performance: our method achieves the best results

for lower noise energy while EPLL with GMM is better for higher noise levels. In Fig.3.12 and

Fig.3.13 we present two examples of denoised images by the three methods. Note, lastly, how

artifacts are notably reduced in the resulting images processed by our method.

3.5 Gaussian Mixture Diffusion

As we have seen, most state-of-the-art denoising algorithms employ a patch-based approach

by enforcing a local model or prior, such as self similarity, sparse representation, or Gaussian

Mixture Model (GMM). While applying these models, these algorithms implicitly build a notion

of similarity between the image pixels. This can be formulated as an image-adaptive linear-filter
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Figure 3.11: Denoising results averaged over 12 images from the Kodak Dataset with respect to
K-SVD [EA06] by EPLL with GMM [ZW11] and the method presented here: EPLL with Sparse

Prior, in terms of the Peak Signal to Noise Ratio (PSNR).

which is then used to denoise or restore the degraded image. In this final section, we focus on

such a filter emerging from the GMM, study its properties and construct a graph Laplacian

from it.

Given the noisy measurements y, the image restoration task can be expressed in terms of an

optimization problem, minimizing a cost function over the unknown image x:

min
x

1

2
‖y − x‖22 + λR(x). (3.9)

From a maximum a posteriori perspective, the first term corresponds to the log-likelihood

function while R(x) enforces the specific model on the unknown image, with parameter λ. This

last term acts as the regularizer, promoting smoothness or other qualities that – we believe –

characterize natural images.

Broadly speaking, often times the denoising process can be decomposed into two stages. The

first one involves highly non-linear decisions which enforce quite sophisticated local priors on

small patches extracted from the image, whereas the second stage accounts for projections and

averaging in order to obtain the final global image. Interestingly, as pointed out in [Mil13,RE15],

once the non-linear part is fixed, these algorithms can be formulated as an image-adaptive linear
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Figure 3.12: Denoising results of an image from the Kodak Database corrupted with a noise
standard deviation of σ = 25. Top left: original image. Top right: K-SVD (PSNR = 32.14 dB).
Bottom left: EPLL with Sparse Prior (PSNR = 32.42 dB). Bottom Right: EPLL with GMM

(PSNR = 32.25 dB).
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Figure 3.13: Denoising results of an image from the Kodak Database, initially corrupted with
additive white Gaussian nose (σ = 25). Top left: Original Image, top right: K-SVD (PSNR =
31.42 dB), bottom left: EPLL with Sparse Prior (PSNR = 31.83 dB), bottom right: EPLL with

GMM (PSNR = 31.85 dB).
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filter, W. This way, the entire denoising process in this framework can be expressed as

x̂ = Wy, (3.10)

where x̂ ∈ RN is the denoised image, and W ∈ RN×N is the matrix form of the denoiser (we

will describe this operator in more detail in Section 3.5.1).

On the one hand, Equation (3.10) states that each denoised pixel in x̂ is the outcome of a

weighted average over the noisy image pixels, where the weights are determined by the specific

denoising algorithm. On the other hand, this shows that most denoising algorithms implicitly

build a notion of similarity between the i-th and j-th image pixels, given by the entry W(i, j).

Based on this observation, the denoiser can be formulated as a weighted graph, where the vertices

refer to the image pixels, and the (weighted) edges represent the pixels’ similarity. Previous

works have addressed the graph formulation (and its properties) of the K-SVD [RE15], the

Non-Local Means, the Bilateral and the LARK kernels [Mil13]. Yet, despite the popularity of

the GMM prior in the image processing community, this analysis has not been addressed for its

resulting operator – this will be the first concern of our work.

Recently, the graph formulation has been employed to regularize the denoising process

[GO07,Mil13,RE15], designing an image-adaptive term R(x) in Equation (3.9). This term is

usually expressed in terms of the Laplacian operator, defined by L = I−W, where I ∈ RN×N

is the identity matrix and W is induced by different denoisers (from Equation (3.10)). Broadly

speaking, the eigenvectors that correspond to the small eigenvalues of L encapsulate most of the

structure of the underlying signal [MS14]. As such, one may propose a graph-based regularization

term that penalizes those components in x corresponding to the large eigenvalues of L; e.g., as

done in [GO07,ELB08],

min
x

1

2
‖y − x‖22 + λxTLx. (3.11)

Notice that when moving from Equation (3.9) to Equation (3.11), we are constraining ourselves

to priors that have a graph-Laplacian interpretation. In these cases, the performance of the

resulting algorithm depends on the choice of L, which is in turn determined by the similarity

measure we use to construct the corresponding graph.

The problem in Equation (3.11) is certainly not the only way to enforce a graph-based

regularization when dealing with inverse problems. Recent works have also considered replacing

the data-fidelity term by a weighted norm induced by the matrix W, as in [KM14]. Another

alternative, presented in [RE15], is to enforce the reconstructed image x to be close to the

filtered image Wy. Formally,

J (x) = min
x

1

2
‖Wy − x‖22 + λxTLx. (3.12)

This formulation generally provides better results than the problem in Equation (3.11), as it

is related to boosting methods. In particular, this is the cost function minimized by the SOS

boosting [RE15].

Interestingly, the minimization of this kind of problems can be interpreted from a variational
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perspective. The Non-Local Diffusion (NLD) algorithm [GO07] suggests a non-local generalization

of the diffusion framework by employing a functional defined over a set of pixels which are not

necessarily near each other. Unlike the conventional diffusion methods, the minimization of the

corresponding functional amounts to a diffusion process between pixels that can now be far

apart by leveraging some notion of similarity or affinity. In particular, the NLD employed the

affinity measure induced by the Non Local Means (NLM) kernel [BCM05], defining the distance

between pixels as a function of the Euclidean distance between their corresponding patches.

The resulting algorithm effectively minimizes the cost function in Equation (3.11), where the

Laplacian is the one corresponding to the NLM operator.

In this work, we explore the algorithm resulting from the problem in Equation (3.12) in the

case of a Laplacian operator induced by the GMM prior. We provide a detailed analysis of the

denoiser resulting from GMM, and employ the formulation in terms of a non-local diffusion

process. This way, our also work extends and improves the non-local diffusion algorithm of [GO07]

by (1) employing a similarity measure induced by the GMM operator, and (2) considering the

cost function in Equation (3.12) instead of the original problem in (3.11). As we will show in the

experimental section, our proposed Gaussian Mixture Diffusion (GMD) approach outperforms

both the initial formulation of the NLD with the NLM kernel [GO07], and the original GMM

algorithm. Interestingly, the GMD is also competitive or even better than the EPLL [ZW11],

which builds upon GMM as well.

3.5.1 Gaussian Mixture Model

GMM is a popular prior for natural image patches, which has been shown to be very effective in

several image restoration tasks [PSWS03,ZW11]. This prior models the distribution of patches as

the sum of multivariate Gaussians learned from real data. Applying this prior for image denoising

accounts to formulating a MAP estimator for each independent patch from the corrupted image.

This can be approximated by choosing the Gaussian with the highest conditional weight for each

patch, and then applying a plain Wiener filter with the corresponding covariance matrix [ZW11].

Finally, a patch averaging step is applied in order to obtain the final denoised image.

Given K (learned) Gaussian distributions, characterized by their covariance matrices Σk,

with zero mean2, denoising each patch zi ∈ Rn can be formally expressed by the following

minimization problem

p̂i = arg min
p
‖p− zi‖22 + σ2pTΣ−1

k(i)p,

where k(i) is the index of the chosen Gaussian with highest conditional weight [ZW11] for the

ith patch, and p̂i is its estimated clean version. This problem has a closed form solution in terms

of the Wiener filter, given by

p̂i =
(
I + σ2Σ−1

k(i)

)−1
zi = Fi zi. (3.13)

Next, the denoised patches p̂i are merged together by averaging. This is done by minimizing

2For simplicity, we make the common assumption that the image patches have zero-mean.
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the following cost function

x̂ = arg min
x

µ‖y − x‖22 +
N∑
i=1

‖p̂i −Rix‖22, (3.14)

where x̂ ∈ RN is the estimated (denoised) global image, and Ri ∈ Rn×N is a matrix that

extracts the ith patch from the image. Following the procedure described in [RE15], the closed

form solution of Equation (3.14) is given by

x̂ =

(
µI +

∑
i

RT
i Ri

)−1(
µI +

∑
i

RT
i FiRi

)
y

= WGMMy, (3.15)

where the filters Fi are the Wiener filters in Equation (3.13). In the above derivation we have

used the fact that zi = Riy. Notice that this linear operator can be written as a matrix WGMM,

and thus the denoised image is simply expressed as x̂ = WGMM y.

While the GMM model is a popular choice for image denoising, a formal analysis of WGMM

has not yet been addressed. In this section, we present the properties of this filter and provide

their corresponding proofs in Appendix 3.7.1. We should note that all these properties are also

shared by the KSVD filter [RE15].

Theorem 3.1. Under the assumption of periodic boundary conditions3, the matrix WGMM,

defined in Equation (3.15), has the following properties:

1. WGMM = WT
GMM: it is symmetric.

2. WGMM � 0: it is positive definite, and has minimal eigenvalue equal to µ
µ+n .

3. ‖WGMM‖2 ≤ 1: its spectral radius ≤ 1.

3.5.2 The Proposed Approach

Based on the properties provided in Theorem 3.1, we can draw interesting conclusions. As it

was done for the K-SVD operator matrix in [RE15], the matrix WGMM can be decomposed into

a similarity matrix KGMM and a normalization matrix D. Formally,

WGMM =

(
µI +

∑
i

RT
i Ri

)−1(
µI +

∑
i

RT
i FiRi

)
=D−1KGMM.

As a consequence, a graph-Laplacian can be constructed from this operator by

LGMM = I−WGMM,

3By assuming cyclic boundary conditions, the following holds:
∑
i R

T
i Ri = nI, where n is the dimension of

the image patch.
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where the eigenvalues of LGMM are in [0, 1).

The denoising algorithm is obtained by minimizing the function J (x), defined in Equation

(3.12), which can be done using a gradient descent strategy. As such, the estimated image is

found by iterating:

xk+1 = xk − γ∇J (x)

where

∇J (x) = x−Wy + 2λLx. (3.16)

For a given step-size γ and regularizer-strength ρ (fixed for each noise level), we run the gradient

descent process a fixed number of iterations. In practice, we do not build L nor W explicitly,

but rather apply it by using the local filters Fi. In the case of the GMM, this corresponds to

knowing the Gaussians chosen for each patch. Before moving to the experimental section, we

should note that the non-local diffusion method of [GO07] employs a minimization driven by an

update very similar to that in Equation (3.16), where y is used instead of Wy – thus, the name.

This shows more clearly the connection to the NLD algorithm, as well as providing a variational

interpretation to the SOS boosting algorithm [RE15].

3.5.3 Experimental Results

In this section we present image denoising results corresponding to the minimization of the cost

function in Equation (3.12) for the Laplacian matrix L induced by the GMM prior, for various

standard test images and noise levels. As for the parameters the proposed GMD, for all noise

levels we set γ = 0.1, λ = 2, and 2 diffusion steps are applied.

We compare the proposed approach to the Non Local Diffusion work [GO07], which cor-

responds to a diffusion process guided by the graph built with the NLM kernel (minimizing

Equation (3.11)). In addition, we also compare the GMD to the plain GMM denoiser as a

baseline. We include for completion the results obtained by the EPLL [ZW11]. This algorithm

essentially minimizes a cost function similar to the one in Equation (3.9), where the prior is

enforced on the reconstructed patches. This idea boils down to applying a GMM-based denoiser

iteratively, with a set of parameters which need to be tuned. Note that the EPLL algorithm is

still a patch-based method which also updates its operator (choosing the Gaussian Mixtures) at

every iteration, whereas in our approach these remain constant.

Table 3.2 provides a comparison between NLD, GMM, EPLL and the proposed GMD

approach in terms of Peak Signal to Noise Ratio (PSNR). As can be seen, for σ = 20, GMD

achieves the best reconstruction performance. For σ = 30, EPLL and GMD obtain comparable

results, whereas for σ = 50, the EPLL slightly outperforms GMD. We remind the reader that the

EPLL, unlike our approach, updates its operator at each iteration. We believe that by updating

the matrix L (i.e., re-run the Gaussian selection step) the GMD results can be further improved,

too. However, we choose not to include this step in our algorithm in order to focus the attention

on the minimization of the problem in Equation (3.12).

Figure 3.14 provides a visual comparison between the NLD approach of [GO07], GMM and
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Table 3.2: Denoising results for various noise levels and images, given in terms of PSNR. The
best result is highlighted.

σ\Image House Saturn Foreman Lena Peppers Girl Woman Averages

Non Local Diffusion (NLM kernel)

20 32.27 35.21 32.65 31.35 31.51 30.03 30.99 32.00

30 30.00 32.57 30.42 29.36 26.65 28.60 28.86 29.49

50 27.14 29.64 27.76 26.86 27.09 26.72 26.06 27.40

GMM

20 32.59 35.54 33.07 32.23 32.11 30.56 31.81 32.56

30 30.84 33.38 31.24 30.48 30.56 29.38 29.86 30.82

50 28.13 30.33 28.66 28.03 28.23 27.82 27.26 28.35

EPLL-GMM

20 32.98 36.68 33.63 32.60 32.51 30.71 32.08 33.03

30 31.22 34.23 31.66 30.78 30.90 29.54 30.04 31.20

50 28.76 31.15 29.16 28.41 28.68 28.00 27.57 28.82

GMD (Proposed)

20 33.07 36.78 33.68 32.61 33.53 30.75 32.14 33.22

30 31.20 34.35 31.70 30.70 30.86 29.53 29.97 31.19

50 28.42 31.12 29.08 28.23 28.47 28.07 27.27 28.66

ours GMD method. As can be seen the GMD reconstruction has less artifacts than the baseline

methods, complying with the quantitative PSNR measure.

3.6 Chapter Conclusion

In this chapter, after having shown the limitations of patch-based approaches in the form of

artifacts, we initially presented a multi-scale extension of the K-SVD denoising algorithm by

proposing a global MAP estimator for the denoised image in the wavelet domain. We tackled

this minimization problem iteratively in terms of the K-SVD algorithm per band, applying a

multi-scale patch denoising of the image. We then boosted the results by fusing the single scale

and multi-scale K-SVD outcome images by a weighted sparse coding step. The results obtained

by this method show the potential benefits of working within a multi-scale framework, as we are

able to combine bigger effective atoms that give rise to clear smooth areas, in which most current

methods fail. The combination of the regular and multi-scale K-SVD denoised images could be

improved by proposing a patch-based adaptive weight instead of a global one, and the joint sparse

coding alternative is effective, but not necessarily the only one. An orthogonal wavelet transform

enabled a simple multi-scale analysis, but other multi-scale transforms might yield improvements

on this framework and are worth exploring. Moreover, this multi-scale approach is not restricted

to the K-SVD algorithm, and the question posed in the introduction still holds for other methods.

We then moved to show that maximizing the Expected Patch Log Likelihood with a sparse

inducing prior leads naturally to a formulation of which the K-SVD algorithm represents the

first iteration. In its original form, this method performed only one update of the image due to

technical difficulties in assessing the remaining noise level. We have shown how to circumvent

this issue and go beyond this first iteration, intrinsically determining the coding threshold in
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(a) Input: Foreman (b) NLD: PSNR = 32.65dB (c) GMM: PSNR =
33.07dB

(d) GMD: PSNR =
33.68dB

(e) Input: Girl (f) NLD: PSNR = 30.03dB (g) GMM: PSNR =
30.56dB

(h) GMD: PSNR =
30.75dB

Figure 3.14: Denoising of the images Foreman (a-d) and Girl (e-h), when σ = 20.

each step. This work completes the one in [EA06], providing the full path to the numerical

minimization of the original cost function and exploiting all the potential of the sparse inducing

prior. The resulting algorithm shows a clear improvement over K-SVD in all the experiments. In

denoising in particular, EPLL with a sparse prior achieved comparable performance to the state

of the art method of EPLL with a GMM prior. Interestingly, both priors yield comparable results

when applied within the EPLL framework. Lastly, we introduced a graph interpretation of the

GMM denoiser, followed by an analysis of the resulting operator. The denoising effect is obtained

by minimizing a cost function with a graph-Laplacian regularization, as suggested by the SOS

formulation. We have shown that the proposed approach can be understood from a variational

perspective, resulting in close variant of the NLD algorithm. Following the experimental results,

it was evidenced that our approach is more effective than the traditional NLD counterpart. Our

results not only outperform those by the regular GMM denoising algorithm, but they are also

competitive with those of the state-of-the-art EPLL method. We believe that updating the

graph (and the corresponding operator) along the iterations (as done by the EPLL and the SOS

boosting) will result in increased performance, and this is a promising direction of future work.

More broadly, we have seen local-patch based approaches provide effective and powerful

priors. Nevertheless, one can boost the performance of these algorithm in several ways once a

more global analysis is performed.
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3.7 Chapter Appendix

3.7.1 Properties of the GMM Matrix

In this appendix we provide the proves for Theorem 3.1.

Proof. We will start by showing that property 1 holds. Under the periodic boundary conditions,

we have that

WGMM =

(
µI +

∑
i

RT
i Ri

)−1(
µI +

∑
i

RT
i FiRi

)

=
1

µ+ n

(
µI +

∑
i

RT
i FiRi

)
.

Recall that the filters Fi, expressed in Equation (3.13) are symmetric (and more so, positive

definite) as they are the inverse of symmetric matrices. Therefore, WGMM is the sum of

symmetric matrices, and it is then also symmetric.

The second property can be deduced using the same rationale. The matrices given by

RT
i FiRi are symmetric and positive semidefinite. Thus, their sum

∑
i R

T
i FiRi is also positive

semidefinite. Moreover, we can express

WGMM =
µ

µ+ n
I +

1

µ+ n

(∑
i

RT
i FiRi

)
.

The first term in this sum is obviously positive definite, while the second is positive semidefinite.

From this, the minimal eigenvalue of the GMM matrix λmin(WGMM) = µ
µ+n > 0, and WGMM �

0.

To prove the last property, consider the operator norm of WGMM given the (square of the)

decomposition presented above:

‖WGMM‖2 =

∥∥∥∥∥ µ

µ+ n
I +

1

µ+ n

(∑
i

RT
i FiRi

)∥∥∥∥∥
2

≤
∥∥∥∥ µ

µ+ n
I

∥∥∥∥
2

+

∥∥∥∥∥ 1

µ+ n

(∑
i

RT
i FiRi

)∥∥∥∥∥
2

. (3.17)

Note first that the operator norm of the first term is given by µ
µ+n . Focusing on the second

term, we consider a similar decomposition to that presented in [RE15] (Appendix B). The sum

in the last Equation, over all N patches, considers overlapping structures. We can decompose

this term by considering the sum over {Ωj}nj=1 groups of non overlapping patches only. With
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this, we have that ∥∥∥∥∥∑
i

RT
i FiRi

∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑
j

∑
k∈Ωj

RT
kFkRk

∥∥∥∥∥∥
2

≤
n∑
j

‖Mj‖2 ,

where we have denoted Mj =
∑

k∈Ωj
RT
kFkRk. Notice that M is a block diagonal matrix,

having the filters Fk as leading minors.

To show that ‖Mj‖2 ≤ 1 we will rely on the definition of the induced norm. Consider thus

any vector x ∈ RN such that ‖x‖2 = 1. Moreover, denote Rkx = xk ∈ Rn. Then,

‖Mjx‖22 =

∥∥∥∥∥∥
∑
k∈Ωj

Mk
jx

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
∑
k∈Ωj

RT
kFkxk

∥∥∥∥∥∥
2

2

. (3.18)

Due to the fact that RT
kRj = 0, ∀i 6= k (because the corresponding patches are non-overlapping),

we have that

‖Mjx‖22 ≤
∑
k∈Ωj

∥∥RT
kFkxk

∥∥2

2
,

≤
∑
k∈Ωj

∥∥RT
k

∥∥2

2
‖Fkxk‖22 ,≤

∑
k∈Ωj

‖Fkxk‖22 , (3.19)

where we have used the multiplicative property of the operator norm and the fact that ‖RT
k ‖2 = 1.

Looking now at the square of the operator norm of Fkxk:

‖Fkxk‖22 =
∥∥(I + σ2Σ−1

k )−1xk
∥∥2

2
≤ ‖xk‖22 , (3.20)

where the inequality holds since λmax(I + σ2Σ−1
k ) ≥ 1, as Σ−1

k � 0.

By using Equations (3.18), (3.19), (3.20), and the fact that ‖x‖22 =
∑

k∈Ωj
‖xk‖22, we have

that

‖Mjx‖22
‖x‖22

=

∥∥∥∑k∈Ωj
RT
kFkxk

∥∥∥2

2

‖
∑

k∈Ωj
xk‖22

≤
∑

k∈Ωj
‖Fkxk‖22∑

k∈Ωj
‖xk‖22

≤
∑

k∈Ωj
‖xk‖22∑

k∈Ωj
‖xk‖22

= 1.

Therefore, the squared maximal singular value (i.e. the operator norm) of Mj is ≤ 1. Incorpo-
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rating this into Equation (3.17), we have that

‖WGMM‖2 ≤
∥∥∥∥ µ

µ+ n
I

∥∥∥∥
2

+

∥∥∥∥∥ 1

µ+ n

(∑
i

RT
i FiRi

)∥∥∥∥∥
2

≤ µ

µ+ n
+

1

µ+ n

n∑
j=1

‖Mj‖2

≤ µ

µ+ n
+

n

µ+ n
≤ 1.
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Chapter 4

Trainlets

Chapter Abstract

Sparse representation has shown to be a very powerful model for real world signals, and has

enabled the development of applications with notable performance. Combined with the ability

to learn a dictionary from signal examples, sparsity-inspired algorithms are often achieving

state-of-the-art results in a wide variety of tasks. However, these methods have traditionally been

restricted to small dimensions mainly due to the computational constraints that the dictionary

learning problem entails. In the context of image processing, this implies handling small image

patches. In this chapter, we show how to efficiently handle bigger dimensions and go beyond the

small patches in sparsity-based signal and image processing methods. We build our approach

based on a new cropped Wavelet decomposition, which enables a multi-scale analysis with

virtually no border effects. We then employ this as the base dictionary within a double sparsity

model to enable the training of adaptive dictionaries. To cope with the increase of training

data, while at the same time improving the training performance, we present an Online Sparse

Dictionary Learning (OSDL) algorithm to train this model effectively, enabling it to handle

millions of examples. The derivations that we now present show that dictionary learning can be

up-scaled to tackle a new level of signal dimensions, obtaining large adaptable atoms that we

call Trainlets.
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4.1 Dictionary Learning for High Dimensional Signals

As presented in Chapter 2, the dictionary learning problem consist in adapting a matrix D to

represent a set of signal examples (given by the columns of a matrix Y) as sparse as possible.

Formally, this can be written as

min
D,Γ

1

2
‖Y −DΓ‖2F subject to ‖γi‖0 ≤ p ∀i, (4.1)

While several works have proposed different algorithmic solutions to minimize this cost function,

they involve computationally complex and time consuming algorithms. As a consequence,

all dictionary learning approaches (and applications) have typically been restricted to small

dimensional signals. In the context of image processing, small signals imply handling small

image patches. Most state-of-the-art methods for image restoration exploit such a localized

patch based approach [DFKE07,MBS09,ZW11]. As we have already presented extensively in the

previous chapter, small overlapping patches (7× 7 - 11× 11) are extracted from the corrupted

image and treated relatively independently according to some image model [DFKE06,ZW11],

sparse representations being a popular choice [DZSW11, YWHM10, EA06, RPE14]. The full

image estimation is lastly formed by merging together the small restored patches by overlapping

and averaging.

Some works have attempted to handle larger two dimensional patches (i.e., greater than

16 × 16) with some success. In [OLE11], and later in [SOE14], traditional K-SVD is applied

in the Wavelet domain. These works implicitly manage larger patches while keeping the atom

dimension small, noting that small patches of Wavelet coefficients translate to large regions

in the image domain. In the context of Convolutional Networks, on the other hand, the work

in [BSH12] has reported encouraging state-of-art result on patches of size 17× 17.

Though adaptable, explicit dictionaries are computationally expensive to apply. Some efforts

have been done in designing fast dictionaries that can be both applied and learned efficiently.

This requirement implies constraining the degrees of freedom of the explicit matrix in some way,

i.e. imposing some structure on the dictionary. One such possibility is the search for adaptable

separable dictionaries, as in [HSK13], or the search of a dictionary which is an image in itself as

in [AE08,BMBP11], lowering the degrees of freedom and obtaining (close to) shift invariant atoms.

Another, more flexible alternative, has been the pursuit of sparse dictionaries [RZE10,YD09].

In these works the dictionary is composed of a multiplication of two matrices, one of which is

sparse. The work in [LMG15] takes this idea a step further, composing a dictionary from the

multiplication of a sequence of sparse matrices. In the interesting work reported in [CMTD15] the

dictionary is modeled as a collection of convolutions with sparse kernels, lowering the complexity

of the problem and enabling the approximation of popular analytically-defined atoms. All of

these works, however, have not addressed dictionary learning on real data of considerably higher

dimensions or with a considerably large dataset.

A related but different model to the synthesis sparse model studied so far is the analysis

model [EMR07,RE14]. In this framework, a dictionary W is learned such that ‖Wy‖0 � n. A
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close variant is the Transform Learning model, where it is assumed that Wy ≈ γ and ‖γ‖0 � n,

as presented in [RB13b]. This framework presents interesting advantages due to the very cheap

sparse coding stage. An online transform learning approach was presented in [RWB15], and a

sparse transform model was presented in [RB13a], enabling the training on bigger image patches.

In our work, however, we constrain ourselves to the study of synthesis dictionary models.

We give careful attention to the model proposed in [RZE10]. In this work a double sparse

model is proposed by combining a fixed separable dictionary with an adaptable sparse component.

This lowers the degrees of freedom of the problem in Equation (4.1), and provides a feasible way

of treating high dimensional signals. However, the work reported in [RZE10] concentrated on 2D

and 3D-DCT as a base-dictionary, thus restricting its applicability to relatively small patches.

In this chapter we expand on this model, showing how to efficiently handle bigger dimensions

and go beyond the small patches in sparsity-based signal and image processing methods. This

model provides the flexibility of incorporating multi-scale properties in the learned dictionary, a

property we deem vital for representing larger signals. For this purpose, we propose to replace

the fixed base dictionary with a new multi-scale one. We build our approach on cropped Wavelets,

a multi-scale decomposition which overcomes the limitations of the traditional Wavelet transform

to efficiently represent small images (expressed often in the form of severe border effects).

Another aspect that has limited the training of large dictionaries has been the amount of data

required and the corresponding amount of computations involved. As the signal size increases, a

(significant) increase in the number of training examples is needed in order to effectively learn

the inherent data structure. While traditional dictionary learning algorithms require many

sweeps of the whole training corpus, this is no longer feasible in our context. Instead, we will

look to online learning methods, such as Stochastic Gradient Decent (SGD) [Bot98]. These

methods have gained prominence in recent years with the advent of big data, and have been

used in the context of traditional (unstructured) dictionary learning [MBPS10] and in training

the special structure of the Image Signature Dictionary [AE08]. We will present an Online

Sparse Dictionary Learning (OSDL) algorithm to effectively train the double-sparsity model.

This approach enable us to handle very large training sets while using high dimensional signals,

achieving faster convergence than the batch alternative and providing a better treatment of local

minima, which are abundant in non-convex dictionary learning problems.

4.2 Sparse Dictionaries

Learning dictionaries for large signals requires adding some constraint to the dictionary, otherwise

signal diversity and the number of training examples needed make the problem intractable.

Often, these constraints are given in terms of a certain structure. One such approach is the

double-sparsity model [RZE10]. In this model the dictionary is assumed to be a multiplication

of a fixed operator Φ (we will refer to it as the base dictionary) by a sparse adaptable matrix A.

Every atom in the effective dictionary D is therefore a linear combination of few and arbitrary

atoms from the base dictionary. Formally, this means that the training procedure requires
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solving the following problem:

min
A,Γ

1

2
‖Y −ΦAΓ‖2F s.t.

{
‖γi‖0 ≤ p ∀i
‖aj‖0 = k ∀j

. (4.2)

Note that the number of columns in Φ and A might differ, allowing flexibility in the redundancy

of the effective dictionary. The authors in [RZE10] used an over-complete Discrete Cosine

Transform (ODCT) as the base dictionary in their experiments. Using Wavelets was proposed

but never implemented due both to implementation issues (the traditional Wavelet transform is

not entirely separable) and to the significant border-effects Wavelets have in small-to-medium

sized patches. We address both of these issues in the following section.

As for the training of such a model, the update of the dictionary is now constrained by

the number of non-zeros in the columns of A. In [RZE10] a variant of the K-SVD algorithm

(termed Sparse K-SVD) was proposed for updating the dictionary. As the work in [AEB06], this

is a batch method that updates every atom sequentially. In the context of the double-sparsity

structure, this task is converted into a sparse-coding problem, and approximated by the greedy

OMP algorithm.

In the recent inspiring work reported in [LMG15] the authors extended the double-sparsity

model to a scenario where the base dictionary itself is a multiplication of several sparse matrices,

that are to be learned. While this structure allows for a clear decrease in the computational

cost of applying the dictionary, its capacity to treat medium-size problems is not explored. The

proposed algorithm involves a hierarchy of matrix factorizations with multiple parameters to be

set, such as the number of levels and the sparsity of each level.

4.3 Cropped Wavelets

The double sparsity model relies on a base-dictionary which should be computationally efficient

to apply. The ODCT dictionary has been used for this purpose in [RZE10], but its applicability

to larger signal sizes is weak. Indeed, as the patch size grows – getting closer to an image

size – the more desirable a multi-scale analysis framework becomes. The separability of the

base dictionary provides a further decrease in the computational complexity. Applying two (or

more) 1D dictionaries on each dimension separately is typically much more efficient than an

equivalent non-separable multi-dimensional dictionary. We will combine these two characteristics

as guidelines in the design of the base dictionary for our model.

4.3.1 Optimal Extensions and Cropped Wavelets

The two dimensional Wavelet transform has shown to be very effective in sparsifying natural

(normal sized) images. When used to analyze small or medium sized images, not only is the

number of possible decomposition scales limited, but more importantly the border effects become

a serious limitation. Other works have pointed out the importance of the boundary conditions

in the context of deconvolution [AF13,Ree05]. However, our approach is different from these, as
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Figure 4.1: Different border treatments: a) periodic, b) symmetric, c) zero-padding, and d) the
resulting optimized extension signal f̄ = Wsgw.

we will focus on the basis elements rather than on the signal boundaries, and in the pursuit of

the corresponding coefficients.

In order to build (bi-)orthogonal Wavelets over a finite (and small) interval, one usually

assumes their periodic or symmetric extension onto an infinite axis. A third alternative, zero-

padding, assumes the signal is zero outside of the interval. However, none of these alternatives

provides an optimal approximation of the signal borders. In general, all these methods do not

preserve their vanishing moments at the boundary of the interval, leading to additional non-zero

coefficients corresponding to the basis functions that overlap with the boundaries [Mal08]. An

alternative is to modify the Wavelet filters such that they preserve their vanishing moments at the

borders of the interval, although constructing such Wavelets while preserving their orthogonality

is complicated [CDV93].

We begin our derivation by looking closely at the zero-padding case. Let f ∈ Rn be a finite

signal. Consider f̄ = Pf , the zero-padded version of f , where P ∈ RL×n, L > n (L is “big

enough”). Considering the Wavelet analysis matrix Wa of size L×L, the Wavelet representation

coefficients are obtained by applying the Discrete Wavelet Transform (DWT) to f̄ , which can

be written as gw = Waf̄ . Note that this is just a projection of the (zero-padded) signal onto

the orthogonal Wavelet atoms. As for the inverse transform, the padded signal is recovered by

applying the inverse Wavelet transform or Wavelet synthesis operator Ws (Ws = WT
a , assuming

orthogonal Wavelets), of size L × L to the coefficients gw. Lastly, the padding is discarded

(multiplying by PT ) to obtain the final signal in the original finite interval:

f̂ = PTWsgw = PTWs (WaPf) = f .

Zero-padding is not an option of preference because it introduces discontinuities in the

function f̄ that result in large (and many) Wavelet coefficients, even if f is smooth inside the

finite interval. This phenomenon can be understood from the following perspective: we are

seeking the representation vector gw that will satisfy the perfect reconstruction of f ,

PTWsgw = f .

The matrix PTWs serves here as the effective dictionary that multiplies the representation in

order to recover the signal. This relation is an under-determined linear system of equations with
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n equations and L unknowns, and thus it has infinitely many possible solutions.

In fact, zero padding chooses a very specific solution to the above system, namely, gw = WaPf .

This is nothing but the projection of the signal onto the adjoint of the above-mentioned dictionary,

since WaP = (PTWs)
T . While this is indeed a feasible solution, such a solution is expected to

have many non-zeros if the atoms are strongly correlated. This indeed occurs for the finite-support

Wavelet atoms that intersect the borders, and which are cropped by PT .

To overcome this problem, we propose the following alternative optimization objective:

gw = arg min
g
‖g‖0 s.t. PTWsg = f ,

i.e., seeking the sparsest solution to this under-determined linear system. Note that in performing

this pursuit, we are implicitly extending the signal f to become f̄ = Wsgw, which is the smoothest

possible with respect to the Wavelet atoms (i.e., it is sparse under the Wavelet transform). At

the same time, we keep using the original Wavelet atoms with all their properties, including

their vanishing moments. On the other hand, we pay the price of performing a pursuit instead of

a simple back-projection. In particular, we use OMP to approximate the solution to this sparse

coding problem. To conclude, our treatment of the boundary issue is obtained by applying the

cropped Wavelets dictionary Wc = PTWs, and seeking the sparsest representation with respect

to it, implicitly obtaining an extension of f without boundary problems.

To illustrate our approach, in Fig. 4.1 we show the typical periodic, symmetric and zero-

padding border extensions applied to a random smooth function, as well as the ones obtained by

our method. As can be seen, this extension – which is nothing else than Wavelet atoms that fit

in the borders in a natural way – guarantees not to create discontinuities which result in denser

representations1. Note that we will not be interested in the actual extensions explicitly in our

work.

To provide further evidence on the better treatment of the borders by the cropped Wavelets,

we present the following experiment. We construct 1,000 random smooth functions f of length

64 (3rd degree polynomials), and introduce a random step discontinuity at sample 32. These

signals are then normalized to have unit l2-norm. We approximate these functions with only 5

Wavelet coefficients, and measure the energy of the point-wise (per sample) error (in l2-sense)

of the reconstruction. Fig. 4.2 shows the mean distribution of these errors2. As expected, the

discontinuity at the center introduces a considerable error. However, the traditional (periodic)

Wavelets also exhibit substantial errors at the borders. The proposed cropped Wavelets, on the

other hand, manage to reduce these errors by avoiding the creation of extra discontinuities.

Practically speaking, the proposed cropped Wavelet dictionary can be constructed by taking

a Wavelet synthesis matrix for signals of length L and cropping it. Also, and because we will be

1A similar approach was presented in [ZM00] in the context of compression. The authors proposed to optimally
extend the borders of an irregular shape in the sense of minimal l1-norm of the representation coefficients under a
DCT transform.

2The m-term approximation with Wavelets is performed with the traditional non-linear approximation scheme.
In this framework, orthogonal Wavelets with periodic extensions perform better than symmetric extensions or
zero-padding, which we therefore omit from the comparison. We used for this experiment Daubechies Wavelets
with 13 taps. All random variables were chosen from Gaussian distributions.
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Figure 4.2: Mean approximation (using 5 coefficients) error per sample of smooth functions of
length 64 with a discontinuity at sample 32.

making use of greedy pursuit methods, each atom is normalized to have unit l2 norm. This way,

the cropped Wavelets dictionary can be expressed as

Φc
1 = PT Ws W ,

where W is a diagonal matrix of size L×L with values such that each atom (column) in Φc
1 (of

size n× L) has a unit norm3. The resulting transform is no longer orthogonal, but this – now

redundant – Wavelet dictionary solves the borders issues of traditional Wavelets enabling for a

lower approximation error.

Just as in the case of zero-padding, the redundancy obtained depends on the dimension of the

signal, the number of decomposition scales and the length of the support of the Wavelet filters

(refer to [Mal08] for a thorough discussion). In practice, we set L = 2dlog2(n)e+1; i.e, twice the

closest higher power of 2 (which reduces to L = 2n if n is a power of two, yielding a redundancy

of at most 2) guaranteeing a sufficient extension of the borders.

4.3.2 A Separable 2-D Extension

The one-dimensional Wavelet transform is traditionally extended to treat two-dimensional signals

by constructing two-dimensional atoms as the separable product of two one-dimensional ones,

per scale [Mal08]. This yields three two-dimensional Wavelet functions at each scale j, implying

a decomposition which is only separable per scale. This means cascading this two-dimensional

transform on the approximation band at every scale.

An alternative extension is a completely separable construction. Considering all the basis

3Because the atoms in Ws are compactly supported, some of them may be identically zero in the central n
samples. These are discarded in the construction of Φc

1.
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Separable 2−D Wavelet Atoms Traditional 2−D Wavelet Atoms

Figure 4.3: 2-D atoms of the Wavelet (Haar) transform for patches of size 8× 8 – the separable
versus the the traditional construction.

elements of the 1-D DWT (in all scales) arranged column-wise in the matrix Φ1, the 2-D

separable transform can be represented as the Kronecker product Φ2 = Φ1 ⊗Φ1. This way, all

properties of the transform Φ1 translate to each of the dimensions of the 2-dimensional signal

on which Φ2 is applied. Now, instead of cascading down a two-dimensional decomposition, the

same 1-D Wavelet transform is applied first to all the columns of the image and then to all the

rows of the result (or vice versa). In relatively small images, this alternative is simpler and faster

to apply compared to the traditional cascade. This modification is not only applicable to the

traditional Wavelet transform, but also to the cropped Wavelets dictionary introduced above. In

this 2-D set-up, both vertical and horizontal borders are implicitly extended to provide a sparser

Wavelet representation.

We present in Fig. 4.3 the 2-D atoms of the Wavelet (Haar) Transform for signals of size

8× 8 as an illustrative example. The atoms corresponding to the coarsest decomposition scale

and the diagonal bands are the same in both separable and non-separable constructions. The

difference appears in the vertical and horizontal bands (at the second scale and below). In the

separable case we see elongated atoms, mixing a low scale in one direction with high scale in the

other.

4.3.3 Approximation of Real-World Signals

While it is hard to rank the performance of separable versus non-separable analytical dictionaries

or transforms in the general case, we have observed that the separable Wavelet transform provides

sparser representations than the traditional 2-D decomposition on small-medium size images.

To demonstrate this, we take 1,000 image patches of size 64× 64 from popular test images, and

compare the m-term approximation achieved by the regular two-dimensional Wavelet transform,

the completely separable Wavelet transform and our separable and cropped Wavelets. A small
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Figure 4.4: Left: Random set of some of the images used for the the M-Term approximation
Experiment. Right: M-Term approximation by the traditional 2-D Wavelets and the separable

and cropped Wavelets on real images of size 64× 64.

subset of these patches is presented on the left of Fig. 4.4. These large patches are in themselves

small images, exhibiting the complex structures characteristic of real world images.

As we see from the results in Fig. 4.4 (right), the separability provides some advantage

over regular Wavelets in representing the image patches. Furthermore, the proposed separable

cropped Wavelets give an even better approximation of the data with fewer coefficients.

Before concluding this section, we make the following remark. It is well known that

Wavelets (separable or not) are far from providing an optimal representation for general images

[Mal08,CD00,DV05]. Nonetheless, in this work these basis functions will be used only as the

base dictionary, while our learned dictionary will consist of linear combinations thereof. It is up

to the learning process to close the gap between the sub-optimal representation capability of the

Wavelets, and the need for a better two dimensional representation that takes into account edge

orientation, scale invariance, and more.

4.4 Online Sparse Dictionary Learning

As seen previously, the de-facto method for training the doubly sparse model has been a batch-like

process. When working with higher dimensional data, however, the required amount of training

examples and the corresponding computational load increase. In this big-data (or medium-data)

scenario, it is often unfeasible or undesired to perform several sweeps over the entire data set. In

some cases, the dimensionality and amount of data might restrict the learning process to only a

couple of iterations. In this regime of work it may be impossible to even store all training samples

in memory during the training process. In an extreme online learning set-up, each data sample is
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seen only once as new data flows in. These reasons lead naturally to the formulation of an online

training method for the double-sparsity model. In this section, we first introduce a dictionary

learning method based on the Normalized Iterative Hard-Thresholding algorithm [BD10]. We

then use these ideas to propose an Online Sparse Dictionary Learning (OSDL) algorithm based

on the popular Stochastic Gradient Descent technique, and show how it can be applied efficiently

to our specific dictionary learning problem.

4.4.1 NIHT-based Dictionary Learning

A popular practice in dictionary learning, which has been shown to be quite effective, is to

employ a block coordinate minimization over this non-convex problem. This often reduces to

alternating between a sparse coding stage, throughout which the dictionary is held constant,

and a dictionary update stage in which the sparse coefficients (or their support) are kept fixed.

We shall focus on the second stage, as the first remains unchanged, essentially applying sparse

coding to a group of examples. Embarking from the objective as given in Equation (4.2), the

problem to consider in the dictionary update stage is the following:

min
A

1

2
||Y −ΦAΓ||2F︸ ︷︷ ︸

f(A)

s.t. ||aj ||0 = k ∀j,

where Φ is the base dictionary of size n× L and A is a matrix of size L×m with k non-zeros

per column. Many dictionary learning methods undertake a sequential update of the atoms

in the dictionary ( [AEB06, MBPS10, RZE10]). Following this approach, we can consider m

minimization problems of the following form:

min
aj

1

2
||Ej −Φajγ

T
j ||2F︸ ︷︷ ︸

f(aj)

s.t. ||aj ||0 = k, (4.3)

where Ej is the error given by Y−
∑

i 6=j Φaiγ
T
i and γTi denotes the i-th row of Γ. This problem

produces the j-th column in A, and thus we sweep through j = 1, . . . ,m to update all of A.

The Normalized Iterative Hard-Thresholding (NIHT) [BD10] algorithm is a popular sparse

coding method in the context of Compressed Sensing [BD08]. This method can be understood as

a projected gradient descent algorithm. We can propose a dictionary update based on the same

concept. Note that we could rewrite the cost function in Equation (4.3) as f(aj) = 1
2 ||Ej−Hjaj ||2F ,

for an appropriate operator Hj . Written in this way, we can perform the dictionary update in

terms of the NIHT by iterating:

at+1
j = Pk

[
atj − ηtj H∗j

(
Ej −Hjatj

)]
, (4.4)

where H∗j is the adjoint of Hj , Pk is a Hard-Thresholding operator that keeps the k largest

non-zeros (in absolute value), and ηtj is an appropriate step-size. This algorithm iterates over

Equation (4.4) until convergence per atom in the dictionary update stage.
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The choice of the step size is critical. Noting that H∗j (Y −Hjaj) = ∇f(aj), in [BD10] the

authors propose to set this parameter per iteration as:

ηtj =
‖∇f(atj)Sj‖2F
‖H∇f(atj)Sj‖2F

, (4.5)

where Sj denotes the support of atj . With this step size, the estimate ât+1 is obtained by

performing a gradient step and hard-thresholding as in Equation (4.5). Note that if the support

of ât+1
j and atj are the same, setting ηtj as in Equation (4.5) is indeed optimal, as it is the

minimizer of the quadratic cost w.r.t. ηtj . In this case, we simply set at+1
j = ât+1

j . If the support

changes after applying Pk, however, the step-size must be diminished until a condition is met,

guaranteeing a decrease in the cost function4. Following this procedure, the work reported

in [BD10] shows that the algorithm in Equation (4.4) is guaranteed to converge to a local

minimum of the problem in Equation (4.3).

Consider now the algorithm given by iterating between 1) sparse coding of all examples in

Y, and 2) atom-wise dictionary update with NIHT in Equation (4.3). An important question

that arises is: will this simple algorithm converge? Let us assume that the pursuit succeeds,

obtaining the sparsest solution for a given sparse dictionary A, which can indeed be guaranteed

under certain conditions. Moreover, pursuit methods like OMP, Basis Pursuit and FOCUSS

perform very well in practice when k � n (refer to [BDE09] for a thorough review). For the

cases where the theoretical guarantees are not met, we can adopt an external interference

approach by comparing the best solution using the support obtained in the previous iteration

to the one proposed by the new iteration of the algorithm, and choosing the best one. This

small modification guarantees a decrease in the cost function at every sparse coding step. The

atom-wise update of the dictionary is also guaranteed to converge to a local minimum for the

above mentioned choice of step sizes. Performing a series of these alternating minimization

steps ensures a monotonic reduction in the original cost function in Equation (4.1), which is

also bounded from below, and thus convergence to a fixed point is guaranteed.

Before moving on, a word on the characteristics of trained dictionaries is in place. The

recovery guarantees of pursuit methods is generally formulated in terms of properties of the

dictionary, such as its mutual coherence or its Restricted Isometry Property (RIP) [Ela10].

While dictionary learning provides better and sparser representations for real data, this adaptive

process generally deteriorates these measures. A trained dictionary does not typically exhibit low

correlation between its atoms, and so the corresponding results (which are worst-case scenario

analyses) say very little about the quality of the obtained dictionary. As we shall see in the

results section, this does not imply a deterioration of its practical performance; on the contrary,

their effectiveness in image representation and restoration is greatly improved.

4The step size is decreased by ηtj = c ηtj , where c < 1. We refer the reader to [BD08] and [BD10] for further
details.
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Algorithm 4.1 Stochastic NIHT for Sparse Dictionary Learning.

Initialization:Training samples {yi}, base-dictionary Φ, initial sparse matrix A0

for i = 1, . . . , Iter do
Draw yi at random

γi ← Sparse Code (yi,Φ,A
i)

Si = Support(γi)

for j = 1, . . . , |Si| do

Update ai+1
S(j) with Equation (4.6) and step size

η∗S(j)
1+i/T

end

end

Result:Sparse Dictionary A

4.4.2 From Batch to Online Learning

As noted in [AE08,MBPS10], it is not compulsory to accumulate all the examples to perform an

update in the gradient direction. Instead, we turn to a stochastic (projected) gradient descent

approach. In this scheme, instead of computing the expected value of the gradient by the sample

mean over all examples, we estimate this gradient over a single randomly chosen example yi.

We then update the atoms of the dictionary based on this estimation using:

at+1
j = Pk

[
atj − ηt ∇f

(
atj ,yi,γi,

)]
. (4.6)

Since these updates might be computationally costly (and because we are only performing

an alternating minimization over problem (4.2)), we might stop after a few iterations of applying

Equation (4.6). We also restrict this update to those atoms that are used by the current

example (since others have no contribution in the corresponding gradient). In addition, instead

of employing the step size suggested by the NIHT algorithm, we employ the common approach

of using decreasing step sizes throughout the iterations, which has been shown beneficial in

stochastic optimization [Bot98]. To this end, and denoting by η∗j the step size resulting from the

NIHT, we employ an effective learning rate of
η∗j

1+t/T , with a manually set parameter T . This

modification does not compromise the guarantees of a decrease in the cost function (for the

given random sample i), since this factor is always smaller than one. We outline the basic stages

of this method in Algorithm 4.1.

An important question that now arises is whether shifting from a batch training approach to

this online algorithm preserves the convergence guarantees described above. Though plenty is

known in the field of stochastic approximations, most of the existing results address convergence

guarantees for convex functions, and little is known in this area regarding projected gradient

algorithms [BB08]. For non-convex cases, convergence guarantees still demand the cost function

to be differentiable with continuous derivatives [Bot98]. In our case, the l0 pseudo-norm makes

a proof of convergence challenging, since the problem becomes not only non-convex but also

(highly) discontinuous.
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Algorithm 4.2 Online Sparse Dictionary Learning (OSDL) algorithm.

Initialization: Training samples {yi}, base-dictionary Φ, initial sparse matrix A0

GΦ = ΦTΦ; U = 0

for t = 1, . . . , T do
Draw a mini-batch Yt at random

Γt ← Sparse Code (Yt,Φ,A
t,Gt)

ηt = ||∇f(At
S)||F /‖Φ∇f(At

S)ΓSt ‖F
Ut+1
S = γUt

S + ηt ∇f(At
S)

At+1
S = Pk

[
At
S −Ut+1

S
]

Update columns and rows of G by
(
At+1

)T
GΦAt+1

S

end

Result: Sparse Dictionary A

That said, one could re-formulate the dictionary learning problem using a non-convex but

continuous and differentiable penalty function, moving from a constrained optimization problem

to an unconstrained one. We conjecture that convergence to a fixed point of this problem can

be reached under the mild conditions described in [Bot98]. Despite these theoretical benefits, we

choose to maintain our initial formulation in terms of the l0 measure for the sake of simplicity

(note that we need no parameters other than the target sparsity). Practically, we saw in all our

experiments that convergence is reached, providing numerical evidence for the behavior of our

algorithm.

4.4.3 OSDL In Practice

We now turn to describe a variant of the method described in Algorithm 4.1, and outline other

implementation details. The atom-wise update of the dictionary, while providing a specific

step-size, is computationally slower than a global update. In addition, guaranteeing a decreasing

step in the cost function implies a line-search per atom that is costly. For this reason we propose

to replace this stage by a global dictionary update of the form

At+1 = Pk
[
At − ηt ∇f(At)

]
,

where the thresholding operator now operates in each column of its argument. While we could

maintain a NIHT approach in the choice of the step-size in this case as well, we choose to employ

η? =
||∇f(AS)||F
||Φ∇f(AS)X||F

. (4.7)

Note that this is the square-root of the value in Equation (4.5) and it may appear as counter-

intuitive. We shall present a numerical justification of this choice in the following section.

Secondly, instead of considering a single sample yt per iteration, a common practice in
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stochastic gradient descent algorithms is to consider mini-batches {yi} of N examples arranged

in the matrix Yt. As explained in detail in [RZE08], the computational cost of the OMP

algorithm can be reduced by precomputing (and storing) the Gram matrix of the dictionary D,

given by G = DTD. In a regular online learning scheme, this would be infeasible due to the

need to recompute this matrix for each example. In our case, however, the matrix needs only to

be updated once per mini-batch. Furthermore, only a few atoms get updated each time. We

exploit this by updating only the respective rows and columns of the matrix G. Moreover, this

update can be done efficiently due to the sparsity of the dictionary A.

Stochastic algorithms often introduce different strategies to regularize the learning process

and try to avoid local minimum traps. In our case, we incorporate in our algorithm a momentum

term Ut controlled by a parameter γ ∈ [0, 1]. This term helps to attenuate oscillations and

can speed up the convergence by incorporating information from the previous gradients. This

algorithm, termed Online Sparse Dictionary Learning (OSDL) is depicted in Algorithm 4.2. In

addition, many dictionary learning algorithms [AEB06, MBPS10] include the replacement of

(almost) unused atoms and the pruning of similar atoms. We incorporate these strategies here

as well, checking for such cases once every few iterations.

4.4.4 Complexity Analysis

We now turn to address the computational cost of the proposed online learning scheme5. As was

thoroughly discussed in [RZE10], the sparse dictionary enables an efficient sparse coding step.

In particular, any multiplication by D, or its transpose, has a complexity of TD = Ω(km+ TΦ),

where m is the number of atoms in Φ (assume for simplicity A square), k is the atom sparsity

and TΦ is the complexity of applying the base dictionary. For the separable case, this reduces to

TΦ = Ω(n
√
m).

Using a sparse dictionary, the sparse coding stage with OMP (in its Cholesky implementation)

is Ω(pn
√
m+ pkm) per example. Considering N examples in a mini-batch, and assuming n ∝ m

and p ∝ n, we obtain a complexity of Ω
(
Nn2(

√
m+ p)

)
.

Moving to the update stage in the OSDL algorithm, calculating the gradient ∇f(AS) has a

complexity of T∇f = Ω((k|S|+n
√
m)N), and so does the calculation of the step size. Recall that

S is the set of atoms used by the current samples, and that |S| < m; i.e., the update is applied

only on a subset of all the atoms. Updating the momentum variable grows as Ω(|S|m), and the

hard thresholding operator is Ω(|S|mlog(m)). In a pessimistic approach, assume |S| ∝ n.

Putting these elements together, the OSDL algorithm has a complexity of Ω(Nn2(
√
m+ k) +

m2log(m)) per mini-batch. The first term depends on the number of examples per mini-batch,

and the second one depends only on the size of the dictionary. For high dimensions (large n),

the first term is the leading one. Clearly, the number of non-zeros per atom k determines the

computational complexity of our algorithm. While in this study we do not address the optimal

way of scaling k, experiments shown hereafter suggest that its dependency with n might in

5We analyze the complexity of just the OSDL for simplicity. The analysis of Algorithm 4.1 is similar, adding
the complexity of the line search of the step sizes.
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fact be less than linear. The sparse dictionary provides a computational advantage over the

online learning methods using explicit dictionaries, such as [MBPS10], which have complexity of

Ω(Nn3).

4.5 Application to Image Processing

In this section we present a number of experiments to illustrate the behaviour of the method pre-

sented in the previous section. We start with a detailed experiment on learning an image-specific

dictionary. We then move on to demonstrations on image denoising and image compression.

Finally we tackle the training of universal dictionaries on millions of examples in high dimensions.

4.5.1 Image-Specific Dictionary Learning

To test the behaviour of the proposed approach, we present the following experiment. We train

an adaptive sparse dictionary in three setups of increasing dimension: with patches of size

12× 12, 20× 20 and 32× 32, all extracted from the popular image Lena, using a fixed number of

non-zeros in the sparse coding stage (4, 10 and 20 non-zeros, respectively). We also repeat this

experiment for different levels of sparsity of the dictionary A. We employ the OSDL algorithm,

as well as the method presented in Algorithm 4.1 (in its mini-batch version, for comparison). We

also include the results by Sparse K-SVD, which is the classical (batch) method for the double

sparsity model, and the popular Online Dictionary Learning (ODL) algorithm [MBPS09]. Note

that this last method is an online method that trains a dense (full) dictionary. Training is done

on 200,000 examples, leaving 30,000 as a test set.

The sparse dictionaries use the cropped Wavelets as their operator Φ, built using the Symlet

Wavelet with 8-taps. The redundancy of this base dictionary is 1.75 (in 1-D), and the matrix A

is set to be square, resulting in a total redundancy of just over 3. For a fair comparison, we

initialize the ODL method with the same cropped Wavelets dictionary. All methods use OMP in

the sparse coding stage. Also, note that the ODL6 algorithm is implemented entirely in C, while

in our case this is only true for the sparse coding, giving the ODL somewhat of an advantage in

run-time.

The results are presented in Fig. 4.5, showing the representation error on the test set, where

each marker corresponds to an epoch. The atom sparsity refers to the number of non-zeros per

column of A with respect to the signal dimension (i.e., 5% in the 12×12 case implies 7 non-zeros).

Several conclusions can be drawn from these results. First, as expected, the online approaches

provide a much faster convergence than the batch alternative. For the low dimensional case,

there is little difference between Algorithm 4.1 and the OSDL, though this difference becomes

more prominent as the dimension increases. In these cases, not only does Algorithm 4.1 converge

slower but it also seems to be more prone to local minima.

As the number of non-zeros per atom grows, the representation power of our sparse dictionary

increases. In particular, OSDL achieves the same performance as ODL for an atom sparsity of

25% for a signal dimension of 144. Interestingly, OSDL and ODL achieve the same performance

6We used the publicly available SPArse Modeling Software package, at http://spams-devel.gforge.inria.fr/.

61

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 P

h.
D

. T
he

si
s 

 P
H

D
-2

01
8-

01
.r

ev
is

ed
 -

 2
01

8



Patch Size: 12x12. Atom Sparsity: 5%

time time time

time time time

time time time
0 2000 4000 6000 8000 0 2000 4000 6000 8000

Patch Size: 20x20. Atom Sparsity: 5% Patch Size: 20x20. Atom Sparsity: 10%

Patch Size: 32x32. Atom Sparsity: 2% Patch Size: 32x32. Atom Sparsity: 5% Patch Size: 32x32. Atom Sparsity: 8%

Sparse K−SVD
ODL
Stochastic NHIT
OSDL

0 50 100 150 200 250

Sparse K−SVD
ODL
Stochastic NHIT
OSDL

Sparse K−SVD
ODL
Stochastic NHIT
OSDL

Sparse K−SVD
ODL
Stochastic NHIT
OSDL

Sparse K−SVD
ODL
Stochastic NHIT
OSDL

Sparse K−SVD
ODL
Stochastic NHIT
OSDL

Sparse K−SVD
ODL
Stochastic NHIT
OSDL

Sparse K−SVD
ODL
Stochastic NHIT
OSDL

Sparse K−SVD
ODL
Stochastic NHIT
OSDL

0 50 100 150 200 250 0 50 100 150 200 250

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000

0 2000 4000 6000 8000

6

7

8

9

6

7

8

9

6

7

8

9

6.5

7

7.5

8

8.5

9

6.5

7

7.5

8

8.5

9

6.5

7

7.5

8

8.5

9

6.5

7

7.5

8

8.5

9

6.5

7

7.5

8

8.5

9

6.5

7

7.5

8

8.5

9

Patch Size: 12x12. Atom Sparsity: 15% Patch Size: 12x12. Atom Sparsity: 25%

Patch Size: 20x20. Atom Sparsity: 15%

Figure 4.5: Experiment 1: Dictionary learning by Sparse K-SVD, by the Stochastic NIHT
presented in Algorithm 4.1, the ODL algorithm [MBPS09] and by the Online Sparse Dictionary

Learning (OSDL).
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for decreasing number of non-zeros in A as the dimension increases: 10% for the 20× 20 case

and ≈ 2% for the 32× 32. In this higher dimensional setting, not only does the sparse dictionary

provide faster convergence but it also achieves a lower minimum. The lower degrees of freedom

of the sparse dictionary prove beneficial in this context7, where the amount of training data is

limited and perhaps insufficient to train a full dictionary. This example suggests that indeed k

could grow slower than linearly with the dimension n.

Before moving on, we want to provide some empirical evidence to support the choice of the

step size in the OSDL algorithm. In Fig. 4.6 we plot the atom-wise step sizes obtained by

Algorithm 4.1, η∗j (i.e., the optimal values from the NIHT perspective), together with their mean

value, as a function of the iterations for the 12× 12 case for illustration. In addition, we show

the global step sizes of OSDL as in Equation (4.7). As can be seen, this choice provides a fair

approximation to the mean of the individual step sizes. Clearly, the square of this value would be

too conservative, yielding very small step sizes and providing substantially slower convergence.

4.5.2 Image Restoration Demonstration

In the context of image restoration, most state-of-the-art algorithms take a patch-based approach.

While the different algorithms differ in the models they enforce on the corrupted patches (or

the prior they chose to consider, in the context a Bayesian formulation) the general scheme

remains very much the same: overlapping patches are extracted from the degraded image, then

restored more or less independently, before being merged back together by averaging. Though

this provides an effective option, this locally-focused approach is far from being optimal. As

noted in several recent works ( [SOE14,SE15,RE15]), not looking at the image as a whole causes

inconsistencies between adjacent patches which often result in texture-like artifacts. A possible

direction to seek for a more global outlook is, therefore, to allow for bigger patches.

We do not intended to provide a complete image restoration algorithm in this work. Instead,

we will show that benefit can indeed be found in using bigger patches in image restoration –

given an algorithm which can cope with the dimension increase. We present an image denoising

experiment of several popular images, for increasing patch sizes. In the context of sparse

representations, an image restoration task can be formulated as a Maximum a Posteriori

formulation [EA06]. In the case of a sparse dictionary, this problem can be posed as:

min
z,γi,A

=
λ

2
||z− y||22 +

∑
i

||ΦAγi −Piz||22 + µi||γi||0,

where z is the image estimate given the noisy observation y, Pi is an operator that extracts

the ith patch from a given image and γi is the sparse representation of the ith patch. We can

minimize this problem by taking a similar approach to that of the dictionary learning problem:

use a block-coordinate descent by fixing the unknown image z, and minimizing w.r.t the sparse

vectors γi and the dictionary (by any dictionary learning algorithm). We then fix the sparse

7Note that this limitation needed to be imposed for a comparison with Sparse K-SVD. Further along this
section we will present a comparison without this limitation.
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Figure 4.6: Step sizes η∗j obtained by the atom-wise NIHT algorithm together with their mean
value, and the global approximation by OSDL.

vectors and update the image z. Note that even though this process should be iterated (as

effectively shown in [SE15]) we stick to the first iteration of this process to make a fair comparison

with the K-SVD based algorithms.

For this experiment, denoted as Experiment 4, we use both Sparse K-SVD and OSDL, for

training the double sparsity model. Each method is run with the traditional ODCT and with the

cropped Wavelets dictionary, presented in this chapter. We include as a reference the results of

the K-SVD denoising algorithm [EA06], which trains a regular (dense) dictionary with patches

of size 8 × 8. The dictionary sparsity was set to be 10% of the signal dimension. Regarding

the size of the dictionary, the redundancy was determined by the redundancy of the cropped

Wavelets (as explained in Section 4.3.1), and setting the sparse matrix A to be square. This

selection of parameters is certainly not optimal. For example, we could have set the redundancy

as an increasing function of the signal dimension. However, learning such increasingly redundant

dictionaries is limited by the finite data of each image. Therefore, we use a square matrix A for

all patch sizes, leaving the study of other alternatives for future work. 10 iterations were used

for the K-SVD methods and 5 iterations for the OSDL.

Fig. 4.7 presents the averaged results over the set of 10 publicly available images used

by [LBM13], where the noise standard deviation was set to σ = 30. Note how the original

algorithm presented in [RZE10], Sparse K-SVD with the ODCT as the base dictionary, does not

scale well with the increasing patch size. In fact, once the base dictionary is replaced by the

cropped Wavelets dictionary, the same algorithm shows a jump in performance of nearly 0.4

dB. A similar effect is observed for the OSDL algorithm, where the cropped Wavelets dictionary

performs the best.

Employing even greater patch sizes eventually results in decreasing denoising quality, even

for the OSDL with Cropped Wavelets. Partially, this could be caused by a limitation of the
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Figure 4.7: Experiment 4: Denoising results as a function of the patch size for Sparse K-SVD
and OSDL, which an overcomplete DCT dictionary and a separable cropped Wavelets dictionary.
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Figure 4.8: Experiment 5: a) Compression results (as in ratio of kept coefficients) by Wavelets,
Cropped separable Wavelets, PCA, OSDL and SeDiL [HSK13] on aligned faces. b) Compression

results for the “Cropped Labeled Faces in the Wild” database.
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Figure 4.9: Subset of atoms from a sparse dictionary trained with OSDL on a database of
aligned face images.

sparse model in representing fine details as the dimension of the signal grows. Also, the amount

of training data is limited by the size of the image, having approximately 250,000 examples

to train on. Once the dimension of the patches increases, the amount of training data might

become a limiting factor in the denoising performance.

As a final word about this experiment, we note that treating all patches the same way (with

the same patch size) is clearly not optimal. A multi-size patch approach has already been

suggested in [LNDF12], though in the context of the Non-Local Means algorithm. The OSDL

algorithm may be the right tool to bring multi-size patch processing to sparse representation-based

algorithms, and this remains a topic of future work.

4.5.3 Adaptive Image Compression

Image compression is the task of reducing the amount of information needed to represent an

image, such that it can be stored or transmitted efficiently. In a world where image resolution

increases at a surprising rate, more efficient compression algorithms are always in demand. In

this section, we do not attempt to provide a complete solution to this problem but rather show

how our online sparse dictionaries approach could indeed aid a compression scheme.

Most (if not all) compression methods rely on sparsifying transforms. In particular, JPEG2000,

one of the best performing and popular algorithms available, is based on the 2-D Wavelet

transform. Dictionary learning has already been shown to be beneficial in this application.

In [BE08], the authors trained several dictionaries for patches of size 15× 15 on pre-aligned face

pictures. These offline trained dictionaries were later used to compress images of the same type,

by sparse coding the respective patches of each picture. The results reported in [BE08] surpass

those by JPEG2000, showing the great potential of similar schemes.

In the experiment we are presenting here (Experiment 5), we go beyond the locally based

compression scheme and propose to perform naive compression by just keeping a certain number
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of coefficients through sparse coding, where each signal is the entire target image. To this end,

we use the same data set as in [BE08] consisting of over 11,000 examples, and re-scaled them

to a size of 64× 64. We then train a sparse dictionary on these signals with OSDL, using the

cropped Wavelets as the base dictionary for 15 iterations. For a fair comparison with other

non-redundant dictionaries, in this case we chose the matrix A such that the final dictionary

is non-redundant (a rectangular tall matrix). A word of caution should be said regarding the

relatively small training data set. Even though we are training just over 4000 atoms on only

11,000 samples, these atoms are only 250-sparse. This provides a great reduction to the degrees

of freedom during training. A subset of the obtained atoms can be seen in Fig. 4.9.

For completion, we include here the results obtained by the SeDiL algorithm [HSK13] (with

the code provided by the authors and with the suggested parameters), which trains a separable

dictionary consisting of 2 small dictionaries of size 64 × 128. Note that this implies a final

dictionary which has a redundancy of 4, though the degrees of freedom are of course limited due

to the separability imposed.

The results of this naive compression scheme are shown in Fig. 4.8a for a testing set (not

included in the training). As we see, the obtained dictionary performs substantially better than

Wavelets – on the order of 8 dB at a given coefficient count. Partially, the performance of our

method is aided by the cropped Wavelets, which in themselves perform better than the regular

2-D Wavelet transform. However, the adaptability of the matrix A results in a much better

compression-ratio. A substantial difference in performance is obtained after training with OSDL,

even while the redundancy of the obtained dictionary is less (by about half) than the redundancy

of its base-dictionary. The dictionary obtained by the SeDiL algorithm, on the other hand, has

difficulties learning a completely separable dictionary for this dataset, in which the faces, despite

being aligned, are difficult to approximate through separable atoms.

As one could observe from the dictionary obtained by our method, some atoms resemble

PCA-like basis elements. Therefore we include the results by compressing the testing images with

a PCA transform, obtained from the same training set – essentially, performing a dimensionality

reduction. As one can see, the PCA results are indeed better than Wavelets due to the regular

structure of the aligned faces, but they are still relatively far from the results achieved by

OSDL [BDE09].

Lastly, we show that this naive compression scheme, based on the OSDL algorithm, does

not rely on the regularity of the aligned faces in the previous database. To support this claim,

we perform a similar experiment on images obtained for the “Cropped Labeled Faces in the

Wild Database” [SL09]. This database includes images of subjects found on the web, and its

cropped version consists of 64× 64 images including only the face of the different subjects. These

face images are in different positions, orientations, resolutions and illumination conditions. We

trained a dictionary for this database, which consists of just over 13,000 examples, with the

same parameter as in the previous case, and the compression is evaluated on a testing set not

included in the training. An analogous training process was performed with SeDiL. As shown in

Fig. 4.8b, the PCA results are now inferior, due to the lack of regularity of the images. The
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separable dictionary provided by SeDiL performs better in this dataset, whose examples consists

of truncated faces rather than heads, and which can be better represented by separable atoms.

Yet, its representation power is compromised by its complete separability when compared to

OSDL, with a 1 dB gap between the two.

4.5.4 Pursuing Universal Big Dictionaries

Dictionary learning has shown how to take advantage of sparse representations in specific

domains, however dictionaries can also be trained for more general domains (i.e., natural

images). For relatively small dimensions, several works have demonstrated that it is possible to

train general dictionaries on patches extracted from non-specific natural images. Such general-

purpose dictionaries have been used in many applications in image restoration, outperforming

analytically-defined transforms.

Using our algorithm we want to tackle the training of such universal dictionaries for image

patches of size 32 × 32, i.e., of dimension 1024. To this end, in this experiment we train a

sparse dictionary with a total redundancy of 6: the cropped Wavelets dictionary introduces a

redundancy of around 3, and the matrix A has a redundancy of 2. The atom sparsity was set

to 250, and each example was coded with 60 non-zeros in the sparse coding stage. Training

was done on 10 Million patches taken from natural images from the Berkeley Segmentation

Dataset [MFTM01]. We run the OSDL algorithm for two data sweeps. For comparison, we

trained a full (unconstrained) dictionary with ODL with the same redundancy, on the same

database and with the same parameters.

We evaluate the quality of such a trained dictionary in an M-Term approximation experiment

on 600 patches (or little images). Comparison is done with regular and separable cropped

Wavelets (the last one being the base-dictionary of the double sparsity model, and as such the

starting point of the training). We also want to compare our results with the approximation

achieved by more sophisticated multi-scale transforms, such as Contourlets. Contourlets are a

better suited multi-scale analysis for two dimensions, providing an optimal approximation rate

for piece-wise smooth functions with discontinuities along twice differentiable curves [DV05].

This is a slightly redundant transform due to the Laplacian Pyramid used for the multi-scale

decomposition (redundancy of 1.33). Note that, traditionally, hard-thresholding is used to obtain

an M-term approximation, as implemented in the code made available by the authors. However,

this is not optimal in the case of redundant dictionaries. We therefore construct an explicit

Contourlet synthesis dictionary, and apply the same greedy pursuit we employ throughout

the chapter. Thus we fully leverage the approximation power of this transform, making the

comparison fair8.

Moreover, and to provide a complete picture of the different transforms, we include also the

8Another option to consider is to use undecimated multi-scale transforms. The Undecimated Wavelet Transform
(UDWT) [Mal08] and the Nonsubsampled Contourlet Transform (NSCT) [ER06] are shift-invariant versions of
the Wavelet and Contourlet transforms, respectively, and are obtained by skipping the decimation step at each
scale. This greater flexibility in representation, however, comes at the cost of a huge redundancy, which becomes a
prohibiting factor in any pursuing scheme. A similar undecimated scheme could be proposed for the corresponding
cropped transforms, however, but this is out of the scope of this work.
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Figure 4.10: Experiment 6: Subset of the general (sparse) dictionary for patches of size 32× 32
obtained with OSDL trained over 10 million patches from natural images.
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Figure 4.11: Experiment 6: Atoms of size 32× 32 with recurring patterns at different locations.

results obtained for a cropped version of Contourlets. Since Contourlets are not separable we

use a 2-D extension of our cropping procedure detailed in Section 4.3.1 to construct a cropped

Contourlets synthesis dictionary. The lack of separability makes this dictionary considerably less

efficient computationally. As in cropped Wavelets, we naturally obtain an even more redundant

dictionary (redundancy factor of 5.3).

A subset of the obtained dictionary is shown in Fig. 4.10, where the atoms have been

sorted according to their entropy. Very different types of atoms can be observed: from the

piece-wise-constant-like atoms, to textures at different scales and edge-like atoms. It is interesting

to see that Fourier type atoms, as well as Contourlet and Gabor-like atoms, naturally arise

out of the training. In addition, such a dictionary obtains some flavor of shift invariance. As

can be seen in Fig. 4.11, similar patterns may appear in different locations in different atoms.

An analogous question could be posed regarding rotation invariance. Furthermore, we could

consider enforcing these, or other, properties in the training. These, and many more questions,

are part of on-going work.

The approximation results are shown in Fig. 4.12.a, where Contourlets can be seen to perform

slightly better than Wavelets. The cropping of the atoms significantly enhances the results

for both transforms, with a slight advantage for cropped Wavelets over cropped Contourlets.

The Trainlets, obtained with OSDL, give the highest PSNR. Interestingly, the ODL algorithm

by [MBPS10] performs slightly worse than the proposed OSDL, despite the vast database of

examples. In addition, the learning (two epochs) with ODL took roughly 4.6 days, whereas the

OSDL took approximately 2 days9. As we see, the sparse structure of the dictionary is not only

beneficial in cases with limited training data (as in Experiment 1), but also in this big data

scenario. We conjecture that this is due to the better guiding of the training process, helping to

avoid local minima which an uncontrained dictionary might be prone to.

As a last experiment, we want to show that our scheme can be employed to train an adaptive

dictionary for even higher dimensional signals. In Experiment 8, we perform a similar training

with OSDL on patches (or images) of size 64× 64, using an atom sparsity of 600. The cropped

9This experiment was run on a 64-bit operating system with an Intel Core i7 microprocessor, with 16 Gb of
RAM, in Matlab.
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Figure 4.12: Experiment 7-8: a) M-term approximation of general image patches of size 32x32
for different methods. b) M-term approximation of general image patches of size 64x64 for
different methods. c) Some atoms of size 64× 64 from the dictionary trained with OSDL.

Wavelets dictionary has a redundancy of 2.44, and we set A to be square. For a fair comparison,

and due to the extensive time involved in running ODL, we first ran ODL for 5 days, giving it

sufficient time for convergence. During this time ODL accessed 3.8 million training examples.

We then ran OSDL using the same examples10.

As shown in Fig. 4.12.b, the relative performance of the different methods is similar to the

previous case. Trainlets again gives the best approximation performance, giving a glimpse into

the potential gains achievable when training can be effectively done at larger signal scales. It

is not possible to show here the complete trained dictionary, but we do include some selected

atoms from it in Fig. 4.12.c. We obtain many different types of atoms: from the very local

curvelets-like atoms, to more global Fourier atoms, and more.

4.6 Large Face Image Inpainting

Image inpainting is a data completion problem that aims to recover – or fill in – missing

information in an degraded image. These areas can be given by individual missing pixels

distributed along the image, or by continuous regions resulting from scratches, foldings or other

forms of degradation of old photographs. In the extreme case where the area to inpaint is

relatively large (also known as hole-filling), this problem becomes challenging [GLM14].

This ill-posed problem, whose solution is often not even well-defined, has received considerable

attention in recent years. Many inpainting approaches rely on Partial Differential Equations

(PDF) [BSCB00,Tsc06], variational formulations [BBC+01], exemplar-based methods [CPT04],

sparsity-enforcing priors [XS10,Gul06] and combinations of them [BBCS10,LMG12]. Despite

their efficient performance, all these works are restricted to either small areas or to the task of

object removal, by propagating and filling-in a proper surrounding background.

10The provided code for ODL is not particularly well suited for cluster-processing (needed for this experiment),
and so the times involved in this case should not be taken as an accurate run-time comparison.
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Figure 4.13: Example of a inpainted image - left: Face image with missing eyes. Right:
inpainted result obtained with the proposed approach.

Some problems, however, require a different approach. We shall focus in the specific problem

of inpainting large areas of face images, like the case in Figure 4.13. As one could foresee,

traditional patch-based methods will not be effective in recovering or estimating the missing data.

Diffusion based and content propagation approaches will also find this problem too challenging.

In fact, any method which seeks to inpaint the missing region by propagating information from

the available image data will fail, as all these are oblivious to the fact that they are inpainting a

face. This missing information needs to be provided in terms of a global model of the target

image.

The task of obtaining an adaptive global model for high dimensional signals is a hard problem.

Some attempts include manifold learning techniques, as in [Pey09], where the authors propose to

learn an adaptable low-dimensional manifold for images. This work includes inpainting examples

on synthetic and texture data, though it is still far from providing a practical solution for

real world face images. The recent work in [PKD+16], on the other hand, proposes the use of

convolutional neural networks to train a global model to inpaint large holes in natural images.

This network, however, was trained for general (street) images and it does not apply to our

specific problem.

In this work, we propose to build such a global prior employing sparse representations

modeling and dictionary learning. The problem of dictionary learning consists of adaptively

learning a set of atoms which are able to represent real signals as sparsely as possible, and

has been a popular topic in signal and image processing over the last decade [BDE09,MBP14].

However, due to the computational constraints that this problem entails, all learning methods are

typically applied on small patches from the image and not on the image itself [AEB06,MBS09].

In other words, attempting to obtain such a global dictionary with traditional dictionary learning

algorithms would be infeasible.

A novel work which has circumvented this problem is the recently proposed Trainlets
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Figure 4.14: A subset of the obtained atoms by OSDL.

framework [SOZE16], where the authors proposed an Online Sparse Dictionary Learning (OSDL)

algorithm that is able to obtain large adaptable atoms from natural images. Trainlets are built

as linear (sparse) combinations of atoms from a fast and analytical dictionary, that of the novel

Cropped Wavelets. This work [SOZE16] presented some initial results on sparse approximation

of face images - indicating their effectiveness in modeling high dimensional data.

In this work we will formulate the inpainting task as an inverse problem regularized by a

sparse prior under a global dictionary trained from publicly available datasets. Our results

indicate that the proposed approach is able to synthesize missing information which is in a

accordance with the global context of the image, yielding natural reconstructed faces.

In order to cope with the increase of training data, the work in [SOZE16] proposed a

dictionary learning algorithm based on ideas from stochastic optimization [Bot98]. In a nutshell,

the algorithm performs sparse coding of a mini-batch of training examples with (Sparse)

OMP [RZE08], and then updates a subset of the dictionary atoms through a variation of

the Normalized Iterative Hard Thresholding algorithm [BD10]. For completion, we present a

summary of this method in Algorithm 4.2, and we refer the reader to [SOZE16] for further

details.

Tackling the learning of a global model for face images in particular, we apply OSDL on

a compendium of face images taken from different datasets, using the freely available code at

the author’s website. To increase the variability of the training data – and to obtain a more

general model – we employ images taken from the Chinese Passport dataset used in [BE08]

(both in its aligned and non aligned formats), the Chicago Faces Database [MCW15], the AT&T

Faces Database11, and the Cropped Yale Database [GBK01]. All images were rescaled to a

size of 100 × 100 pixels, and employed as is; i.e., there was no coherent scaling or alignment

11Freely available from AT&T Laboratories Cambridge’s website.
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involved. All together, these amounted to a training set of roughly 19,000 images. OSDL took

approximately 2 days to perform 40 data-sweeps12. We employed the Cropped Wavelets as the

base dictionary (with Daubechies Wavelets with 4 vanishing moments), which has a redundancy

of ≈ 1.7. The matrix A was chosen to be tall (under-complete), having 6,000 atoms in it. The

atom sparsity was set to 1000; i.e., these are only ≈ 6% sparse. We present some of the obtained

atoms in Figure 4.14, where one can see that not only they resemble faces or face-features, but

also the obtained variability between different sizes and configurations.

4.6.1 Inpainting Formulation

Once the global model has been obtained, we move to describe in detail the inpainting formulation.

Consider the original image y0 ∈ Rn (n = 10, 000), and a mask M, given by a binary matrix

of size l × n, where l = c · n. This way, c denotes the fraction of the pixels that have not been

removed (and remain) from the degraded image given by y = My0.

Given this degradation model, and leveraging the obtained dictionary D, the inpainting

inverse problem can be cast in terms of a pursuit by adding a sparse regularization term.

Formally,

min
γ
‖γ‖0 subject to ‖y −MDγ‖2 ≤ ε.

This is nothing but a sparse coding problem with the incorporation of a degradation

mask. Unlike the sparse coding stage in Algorithm 4.2, we now turn to a relaxation of this

formulation moving from the `0 to the `1 norm. This way, we replace the problem above with

the unconstrained optimization problem given by

min
γ
‖y −MDγ‖2 + λ‖γ‖1, (4.8)

where λ is a the penalty parameter, compromising between the desired sparsity and the

(masked) fidelity term. The shift from the `0 to the `1 norm is motivated by a practical aspect:

in the inpainting problem, where one does not known a priori the number of non-zero elements

needed to obtain a good reconstruction (or the equivalent ε threshold), it is easier to tune a

penalty parameter λ. The number of non-zeros in γ might be larger than those employed during

the training, therefore making a greedy pursuit time consuming. In addition, we have found this

`1 approach to yield solutions that are smoother, resulting in more naturally-looking inpainted

areas.

Due to the convexity of the problem in Equation (4.8), a variety of algorithms can be

employed to find its solution. Iterative shrinkage algorithms are particularly well-suited for this

kind of problems, and we employ FISTA as the specific solver [BT09a]13. Our implementation

of this method benefits from the relatively low-complexity of applying D. Indeed, multiplying a

12We run our experiment on a Windows computer with an Intel Xeon E5 CPU, with 64 Gb of RAM running
Windows 64 bits. However, no parallel processing was used, and memory consumption did not exceed 16 Gb.

13While we employ FISTA for the minimization of Equation (4.8), the learning algorithm (OSDL) still employs
OMP for the Sparse Coding stage.
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Figure 4.15: Inpainting of the image on the left column, for increasing values of λ (from left to
right) in the range [0.05,50], with Trainlets.

vector by the dictionary (or its transpose) is never done explicitly. Instead, this is computed in

terms of the product with the (very) sparse matrix A and the 1-dimensional wavelet dictionaries,

which represent the separable operator Φ.

4.6.2 Results

For our experiments, we applied the method described in the previous section on a set of

testing images, not included in the training set. In order to demonstrate the benefits of the

proposed approach based on Trainlets, we compare with a number of other methods; namely:

1) the patch-propagation method of [XS10], which employs a sparse (patch) prior to inpaint

the image, 2) a PCA (global) learned basis, and 3) the Separable Dictionary Learning (SEDIL)

algorithm [HSK13], which also trains a global but separable dictionary. For this last method, we

trained two 1-dimensional dictionaries of size 100× 200 on the same training set, employing the

code provided by the authors14. Note that both PCA and SEDIL obtain a set of global adaptive

atoms by enforcing some constraints: orthogonality and separability, respectively.

The inpainting algorithm resulting from the minimization of Equation (4.8) depends on the

parameter λ, and its value influences the quality of the final reconstruction. An example is

presented in Figure 4.15, where we inpaint the image on the left with the proposed approach for

increasing values of this parameter.

In our experiments, and for a legitimate comparison, we run each method for a series of

values of this parameter and then selected the most plausible results for each method separately

Note that the selection of the best (most plausible) result is somewhat subjective, for which we

14Note that this is a batch method, and we employed 2,000 iterations. Training with SEDIL took approximately
2.5 days, resulting in both dictionary learning algorithms running for about the same time.

75

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 P

h.
D

. T
he

si
s 

 P
H

D
-2

01
8-

01
.r

ev
is

ed
 -

 2
01

8



have used our most fair judgment.

The comparison with [XS10], on the other hand, is not entirely fair: inpaiting methods based

on patch propagation are not expected to perform well in this challenging problem, as they

cannot inpaint elements (mouth, eyes, etc) that do not appear in the available image region. Yet,

we include them for completion and in order to demonstrate the intrinsic need of a global model.

We present a subset of our results in Figure 4.16, and more examples can be found in the

supplementary material. As expected, the local method of [XS10] provides results that are not

in agreement with the global context. On the other hand, the performance of SEDIL is limited,

while PCA sometimes manages to recover somewhat of a natural result. Still, the constraints

imposed by both of these two methods appear to be too restrictive for this problem. As can be

seen, Trainlets provide the best results – often making it hard to distinguish between the original

and the synthetic inpainted image. Some cases are particularly interesting: in the third image,

where the glare in the glasses occlude the left eye, our approach manages to restore it; in the

fourth image, we inpaint an eye which was not originally there due to lighting conditions, still in

a plausible manner. More interesting examples can be found in the supplementary material.

4.7 Chapter Conclusions

In this Chapter we have propose a different solution to the limitations of patch-based approaches:

increase the patch size to become a global image. This approach requires a careful analysis of

the dictionary model, as well as the training algorithm employed to adapt this model effectively.

After these aspects have been considered, we have shown that benefit can be gained by increasing

the small dimensional patches in traditional restoration applications, like image denoising.

Interestingly, when searching for universal dictionaries, we found that our model proposes

all kinds of atoms that resemble (to some extent) typical analytic constructions popular in

approximation theory.

Our approach proves most successful when deployed for a particular class of images, as in

the case of face images. In this scenario, one can tackle very challenging restoration problems –

only attainable to very recent Deep Learning methods [PKD+16]. An interesting observation

is that once a good global model is at our disposal, there is no need for any extra algorithmic

manipulation of the data: there is no symmetry, exemplar-based copying or other form of

external regularization enforced in the reconstruction; this is naturally captured by the learning

process. Exploring the ability of a similar approach in tackling other inverse problems is an

interesting direction of research and part of ongoing work.

Finally, while the our method is very effective in modeling images from a similar class,

employing this approach for the inpainting of large areas in natural images is unlikely to succeed,

as learning a global model for such general cases is a significantly more challenging task. In

this case, improvements on the learning algorithm (and the model) would be needed before

attempting to solve this kind of inverse problem.
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Figure 4.16: Inpainting results. From left to right: masked image, patch propagation [XS10],
PCA, SEDIL [HSK13], Trainlets [SOZE16], and the original image.
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4.8 Chapter Appendix

4.8.1 Further Inpainting Results

Figure 4.17: Inpainting results. From left to right: masked image, patch propagation [XS10],
PCA, SEDIL [HSK13], Trainlets [SOZE16], and the original image.
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Figure 4.18: Inpainting results. From left to right: masked image, patch propagation [XS10],
PCA, SEDIL [HSK13], Trainlets [SOZE16], and the original image.
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Chapter 5

Convolutional Sparse Coding

Chapter Abstract

The celebrated sparse representation model has led to remarkable results in various signal

processing tasks in the last decade. However, despite its initial purpose of serving as a global

prior for entire signals, it has been commonly used for modeling low dimensional patches due

to the computational constraints it entails when deployed with learned dictionaries. A way

around this problem has been recently proposed, adopting a convolutional sparse representation

model. This approach assumes that the global dictionary is a concatenation of banded Circulant

matrices. While several works have presented algorithmic solutions to the global pursuit problem

under this new model, very few truly-effective guarantees are known for the success of such

methods. In this chapter, we address the theoretical aspects of the convolutional sparse model

providing the first meaningful answers to questions of uniqueness of solutions and success of

pursuit algorithms, both greedy and convex relaxations, in ideal and noisy regimes. To this end,

we generalize mathematical quantities, such as the `0 norm, mutual coherence, Spark and RIP

to their counterparts in the convolutional setting, intrinsically capturing local measures of the

global model. On the algorithmic side, we demonstrate how to solve the global pursuit problem

by using simple local processing, thus offering a first of its kind bridge between global modeling

of signals and their patch-based local treatment.
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5.1 An Underlying Local-Global Model?

The previous chapter showed that if one is to propose a global sparse model for images, one

must constrain the dictionary in order to ovoid the curse of dimensionality. We leveraged this

observation in the context of the double sparsity model, showing that the dictionary learning

problem can indeed be up-scaled. However, the Trainlets approach clearly has limitations that

will prevent us from learning a model for arbitrarily large images.

An alternative is a constrained global model in which the signal is composed as a superposition

of local atoms. The family of dictionaries giving rise to such signals is a concatenation of banded

Circulant matrices, as depicted in Figure 5.1. This global model benefits from having a local

shift invariant structure – a popular assumption in signal and image processing – suggesting an

interesting connection to the above-mentioned local modeling.

When the dictionary D has this structure of a concatenation of banded Circulant matrices, the

resulting pursuit problem is usually known as convolutional sparse coding [GRKN07]. Recently,

several works have addressed the problem of using and training such a model in the context of

image inpainting, super-resolution, and general image representation [BEL13,HHW15,KF14,

Woh14, GZX+15]. These methods usually exploit an ADMM formulation [BPC+11] while

operating in the Fourier domain in order to search for the sparse codes and train the dictionary

involved. Several variations have been proposed for solving the pursuit problem, yet there has

been no theoretical analysis of their success.

Assume a signal is created by multiplying a sparse vector by a convolutional dictionary. We

will let the following set of questions guide our work and the results presented in this chapter:

1. Can we guarantee the uniqueness of such a global (convolutional) sparse vector?

2. Can global pursuit algorithms, such as the ones suggested in recent works, be guaranteed

to find the true underlying sparse code, and if so, under which conditions?

3. Can we guarantee a stability of the sparse approximation problem, and a stability of

corresponding pursuit methods in a noisy regime?

4. Can we solve the global pursuit by restricting the process to local pursuit operations?

A näıve approach to address such theoretical questions is to apply the fairly extensive results

for sparse representation and compressed sensing to the above defined model [Ela10]. However,

as we will show throughout this chapter, this strategy provides nearly useless results and bounds

from a global perspective. Therefore, there exists a true need for a deeper and alternative

analysis of the sparse coding problem in the convolutional case which would yield meaningful

bounds.

In this chapter, we will demonstrate the futility of the `0-norm in providing meaningful

bounds in the convolutional model. This, in turn, motivates us to propose a new localized

measure – the `0,∞ norm. Based on it, we redefine our pursuit into a problem that operates

locally while thinking globally. To analyze this problem, we extend useful concepts, such as
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⋮=+ Γ53= + Γ36+ Γ10Γ1

𝐃𝐿

𝐱i

Γ1

Γ10

Γ53

Figure 5.1: The convolutional model description, and its composition in terms of the local
dictionary DL.

the Spark and mutual coherence, to the convolutional setting. We then provide claims for

uniqueness of solutions and for the success of pursuit methods in the noiseless case, both for

greedy algorithms and convex relaxations. Based on these theoretical foundations, we then

extend our analysis to a more practical scenario, handling noisy data and model deviations.

We generalize and tie past theoretical constructions, such as the Restricted Isometry Property

(RIP) [CT05] and the Exact Recovery Condition (ERC) [Tro04], to the convolutional framework

proving the stability of this model in this case as well.

Before diving in, a word about notation. The general approach of denoting vectors and

matrices with bold characters will be maintained. However, and because the results presented

in this chapter duel on the analysis of local and global vectors, we will employ the somewhat

unorthodox choice of capital letters for global vectors and lowercase for local ones.

5.2 Preliminaries on CSC

Consider now the global dictionary to be a concatenation of m banded Circulant matrices1, where

each such matrix has a band of width n� N . As such, by simple permutation of its columns,

such a dictionary consists of all shifted versions of a local dictionary DL of size n×m. This model

is commonly known as Convolutional Sparse Representation [GRKN07,BL14,HHW15]. Hereafter,

whenever we refer to the global dictionary D, we assume it has this structure. Assume a signal

X to be generated as DΓ. In Figure 5.1 we describe such a global signal, its corresponding

dictionary that is of size N ×mN and its sparse representation, of length mN . We note that Γ

is built of N distinct and independent sparse parts, each of length m, which we will refer to as

the local sparse vectors αi.

Consider a sub-system of equations extracted from X = DΓ by multiplying this system

by the patch extraction2 operator Ri ∈ Rn×N . The resulting system is xi = RiX = RiDΓ,

1Each of these matrices is constructed by shifting a single column, supported on n subsequent entries, to all
possible shifts. This choice of Circulant matrices comes to alleviate boundary problems.

2Denoting by 0(a×b) a zeros matrix of size a × b, and I(n×n) an identity matrix of size n × n, then Ri =[
0(n×(i−1)), I(n×n),0(n×(N−i−n+1))

]
.
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where xi is a patch of length n extracted from X from location i. Observe that in the set of

extracted rows, RiD, there are only (2n− 1)m columns that are non-trivially zero. Define the

operator Si ∈ R(2n−1)m×mN as a columns’ selection operator3, such that RiDSTi preserves all

the non-zero columns in RiD. Thus, the subset of equations we get is essentially

xi = RiX = RiDΓ = RiDSTi SiΓ. (5.1)

Definition 1. Given a global sparse vector Γ, define γi = SiΓ as its ith stripe representation.

Note that a stripe γi can be also seen as a group of 2n− 1 adjacent local sparse vectors αj of

length m from Γ, centered at location αi.

Definition 2. Consider a convolutional dictionary D defined by a local dictionary DL of size

n×m. Define the stripe dictionary Ω of size n× (2n− 1)m, as the one obtained by extracting

n consecutive rows from D, followed by the removal of its zero columns, namely Ω = RiDSTi .

Observe that Ω, depicted in Figure 5.2, is independent of i, being the same for all locations due

to the union-of-Circulant-matrices structure of D. In other words, the shift invariant property

is satisfied for this model – all patches share the same stripe dictionary in their construction.

Armed with the above two definitions, Equation (5.1) simply reads xi = Ωγi.

From a different perspective, one can synthesize the signal X by considering D as a concate-

nation of N vertical stripes of size N ×m (see Figure 5.1), where each can be represented as

RT
i DL. In other words, the vertical stripe is constructed by taking the small and local dictionary

DL and positioning it in the ith row. The same partitioning applies to Γ, leading to the αi

ingredients. Thus,

X =
∑
i

RT
i DLαi.

Since αi play the role of local sparse vectors, DLαi are reconstructed patches (which are not

the same as xi = Ωγi), and the sum above proposes a patch averaging approach as practiced in

several works [AEB06,ZW11,SE15]. This formulation provides another local interpretation of

the convolutional model.

Yet a third interpretation of the very same signal construction can be suggested, in which

the signal is seen as resulting from a sum of local/small atoms which appear in a small number

of locations throughout the signal. This can be formally expressed as

X =

m∑
i=1

di ∗ zi,

where the vectors zi ∈ RN are sparse maps encoding the location and coefficients convolved with

the ith atom [GRKN07]. In our context, Γ is simply the interlaced concatenation of all zi.

3An analogous definition can be written for this operator as well.
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𝛀 ∈ ℝ𝑛× 2𝑛−1 𝑚 

= 𝐱i 𝛄i 

Figure 5.2: Stripe Dictionary

This model (adopting the last convolutional interpretation) has received growing attention

in recent years in various applications. In [MSH08] a convolutional sparse coding framework

was used for pattern detection in images and the analysis of instruments in music signals, while

in [ZL15] it was used for the reconstruction of 3D trajectories. The problem of learning the

local dictionary DL was also studied in several works [ZKTF10,KSB+10,BL14,Woh14,HA15].

Different methods have been proposed for solving the convolutional sparse coding problem

under an `1-norm penalty. Commonly, these methods rely on the ADMM algorithm [BPC+11],

exploiting multiplications of vectors by the global dictionary in the Fourier domain in order

to reduce the computational cost involved [BL14]. An alternative is the deployment of greedy

algorithms of the Matching Pursuit family [MZ93], which suggest an `0 constraint on the global

sparse vector. The reader is referred to the work of [Woh14] and references therein for a thorough

discussion on these methods. In essence, all the above works are solutions to the minimization

of a global pursuit under the convolutional structure. As a result, the theoretical results in our

work will apply to these methods, providing guarantees for the recovery of the underlying sparse

vectors.

5.3 From Global to Local Analysis

Consider a sparse vector Γ of size mN which represents a global (convolutional) signal. Assume

further that this vector has a few k � N non-zeros. If these were to be clustered together in a

given stripe γi, the local patch corresponding to this stripe would be very complex, and pursuit

methods would likely fail in recovering it. On the contrary, if these k non-zeros are spread all

throughout the vector Γ, this would clearly imply much simpler local patches, facilitating their

successful recovery. This simple example comes to show the futility of the traditional global

`0-norm in assessing the success of convolutional pursuits, and it will be the pillar of our intuition

throughout our work.
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5.3.1 The `0,∞ Norm and the P0,∞ Problem

Let us now introduce a measure that will provide a local notion of sparsity within a global sparse

vector.

Definition 3. Define the `0,∞ pseudo-norm of a global sparse vector Γ as

‖Γ‖0,∞ = max
i
‖γi‖0.

In words, this quantifies the number of non-zeros in the densest stripe γi of the global Γ. This is

equivalent to extracting all stripes from the global sparse vector Γ, arranging them column-wise

into a matrix A and applying the usual ‖A‖0,∞ norm – thus, the name. By constraining the `0,∞

norm to be low, we are essentially limiting all stripes γi to be sparse, and their corresponding

patches RiX to have a sparse representation under a shift-invariant local dictionary Ω. This

is one of the underlying assumptions in many signal and image processing algorithms. As for

properties of this norm, similar to `0 case, in the `0,∞ the non-negativity and triangle inequality

properties hold, while homogeneity does not.

Armed with the above definition, we now move to define the P0,∞ problem:

(P0,∞) : min
Γ

‖Γ‖0,∞ s.t. DΓ = X.

When dealing with a global signal, instead of solving the P0 problem (minimizing the `0 norm of

Γ) as is commonly done, we aim to solve the above defined objective instead. The key difference

is that we are not limiting the overall number of zeros in Γ, but rather putting a restriction on

its local density.

5.3.2 Global versus Local Bounds

As mentioned previously, theoretical bounds are often given in terms of the mutual coherence of

the dictionary. In this respect, a lower bound on this value is much desired. In the case of the

convolution sparse model, this value quantifies not only the correlation between the atoms in

DL, but also the correlation between their shifts. Though in a different context, a bound for

this value was derived in [Wel74], and it is given by

µ(D) ≥

√
m− 1

m(2n− 1)− 1
. (5.2)

For a large value of m, one obtains that the best possible coherence is µ(D) ≈ 1√
2n

. This implies

that if we are to apply BP or OMP to recover the sparsest Γ that represents X, the classical

sparse approximation results [BDE09] would allow merely O(
√
n) non-zeros in all Γ, for any N ,

no matter how long X is! As we shall see next, the situation is not as grave as it may seem, due

to our migration from P0 to P0,∞. Leveraging the previous definitions, we will provide global

recovery guarantees that will have a local flavor, and the bounds will be given in terms of the
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N : length of the global signal.

n : size of a local atom or a local signal patch.

m : number of unique local atoms (filters) or the number
of Circulant matrices.

X, Y and
E

:
global signals of length N , where generally
Y = X + E.

D : global dictionary of size N ×mN .

Γ and ∆ : global sparse vectors of length mN .

Γi and ∆i : the ith entry in Γ and ∆, respectively.

DL : local dictionary of size n×m.

Ω :
stripe dictionary of size n× (2n− 1)m, which
contains all possible shifts of DL.

αi : local sparse code of size m.

γi and δi :
a stripe of length (2n− 1)m extracted
from the global vectors Γ and ∆, respectively.

γi,s and
δi,s

:
a local sparse vector of length m which corresponds
to the sth portion inside γi and δi, respectively.

Table 5.1: Summary of notations used throughout this chapter.

number of non-zeros in the densest stripe. This way, we will show that the guarantee conditions

can be significantly enhanced to O(
√
n) non-zeros locally rather than globally.

5.4 Theoretical Study of Ideal Signals

As motivated in the previous section, the concerns of uniqueness, recovery guarantees and

stability of sparse solutions in the convolutional case require special attention. We now formally

address these questions by following the path taken in [Ela10], carefully generalizing each and

every statement to the global-local model discussed here.

Before proceeding onto theoretical grounds, we briefly summarize, for the convenience of the

reader, all notations used throughout this work in Table 5.1.

5.4.1 Uniqueness and Stripe-Spark

Just as it was initially done in the general sparse model, one might ponder about the uniqueness

of the sparsest representation in terms of the `0,∞ norm. More precisely, does a unique solution

to the P0,∞ problem exist? and under which circumstances? In order to answer these questions

we shall first extend our mathematical tools, in particular the characterization of the dictionary,

to the convolutional scenario.

In Chapter 2 we recalled the definition of the Spark of a general dictionary D. In the same

spirit, we propose the following:

Definition 4. Define the Stripe-Spark of a convolutional dictionary D as

σ∞(D) = min
∆

‖∆‖0,∞ s.t. ∆ 6= 0, D∆ = 0.
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In words, the Stripe-Spark is defined by the sparsest non-zero vector, in terms of the `0,∞ norm,

in the null space of D. Next, we use this definition in order to formulate an uncertainty and

a uniqueness principle for the P0,∞ problem that emerges from it. The proof of this and the

following theorems are described in detail in the Supplementary Material.

Theorem 5. (Uncertainty and uniqueness using Stripe-Spark): Let D be a convolutional dictio-

nary. If a solution Γ obeys ‖Γ‖0,∞ < 1
2σ∞, then this is necessarily the global optimum for the

P0,∞ problem for the signal DΓ.

5.4.2 Lower Bounding the Stripe-Spark

In general, and similar to the Spark, calculating the Stripe-Spark is computationally intractable.

Nevertheless, one can bound its value using the global mutual coherence defined in Section

2. Before presenting such bound, we formulate and prove a Lemma that will aid our analysis

throughout this chapter.

Lemma 5.4.1. Consider a convolutional dictionary D, with mutual coherence µ(D), and a

support T with `0,∞ norm4 equal to k. Let GT = DT
TDT , where DT is the matrix D restricted

to the columns indicated by the support T . Then, the eigenvalues of this Gram matrix, given by

λi
(
GT
)
, are bounded by

1− (k − 1)µ(D) ≤ λi
(
GT
)
≤ 1 + (k − 1)µ(D).

Proof. From Gerschgorin’s theorem, the eigenvalues of the Gram matrix GT reside in the union

of its Gerschgorin circles. The jth circle, corresponding to the jth row of GT , is centered at the

point GTj,j (belonging to the Gram’s diagonal) and its radius equals the sum of the absolute

values of the off-diagonal entries; i.e.,
∑

i,i 6=j |GTj,i|. Notice that both indices i, j correspond to

atoms in the support T . Because the atoms are normalized, ∀ j, GTj,j = 1, implying that all

Gershgorin disks are centered at 1. Therefore, all eigenvalues reside inside the circle with the

largest radius. Formally,

∣∣λi (GT )− 1
∣∣ ≤ max

j

∑
i,i 6=j

∣∣GTj,i∣∣ = max
j

∑
i,i 6=j
i,j∈T

|dTj di
∣∣. (5.3)

On the one hand, from the definition of the mutual coherence, the inner product between atoms

that are close enough to overlap is bounded by µ(D). On the other hand, the product dTj di is

zero for atoms di too far from dj (i.e., out of the stripe centered at the jth atom). Therefore,

we obtain: ∑
i,i 6=j
i,j∈T

|dTj di| ≤ (k − 1) µ(D),

4Note that specifying the `0,∞ of a support rather than a sparse vector is a slight abuse of notation, that we
will nevertheless use for the sake of simplicity.
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where k is the maximal number of non-zero elements in a stripe, defined previously as the `0,∞

norm of T . Note that we have subtracted 1 from k because we must omit the entry on the

diagonal. Putting this back in Equation (5.3), we obtain

∣∣λi (GT )− 1
∣∣ ≤ max

j

∑
i,i 6=j
i,j∈T

|dTj di
∣∣ ≤ (k − 1) µ(D).

From this we obtain the desired claim.

We now dive into the next theorem, whose proof relies on the above Lemma.

Theorem 6. (Lower bounding the Stripe-Spark via the mutual coherence): For a convolutional

dictionary D with mutual coherence µ(D), the Stripe-Spark can be lower-bounded by

σ∞(D) ≥ 1 +
1

µ(D)
.

Using the above derived bound and the uniqueness based on the Stripe-Spark we can now

formulate the following theorem:

Theorem 7. (Uniqueness using mutual coherence): Let D be a convolutional dictionary with

mutual coherence µ(D). If a solution Γ obeys ‖Γ‖0,∞ < 1
2(1 + 1

µ(D)), then this is necessarily the

sparsest (in terms of `0,∞ norm) solution to P0,∞ with the signal DΓ.

The proof of this claim is rather trivial, noting that if ‖Γ‖0,∞ < 1
2(1 + 1

µ(D)), then necessarilly

‖Γ‖0,∞ < 1
2σ∞, and so from Theorem 5 Γ is unique.

At the end of Section 5.3 we mentioned that for m� 1, the classical analysis would allow an

order of O(
√
n) non-zeros all over the vector Γ, regardless of the length of the signal N . In light

of the above theorem, in the convolutional case, the very same quantity of non-zeros is allowed

locally per stripe, implying that the overall number of non-zeros in Γ grows linearly with the

global dimension N .

5.4.3 Recovery Guarantees for Pursuit Methods

In this subsection, we attempt to solve the P0,∞ problem by employing two common, but very

different, pursuit methods: the Orthogonal Matching Pursuit (OMP) and the Basis Pursuit (BP)

– the reader is referred to [Ela10] for a detailed description of these formulations and respective

algorithms. Leaving aside the computational burdens of running such algorithms, which will

be addressed in the second part of this work, we now consider the theoretical aspects of their

success.

Previous works [DE03,Tro04] have shown that both OMP and BP succeed in finding the

sparsest solution to the P0 problem if the cardinality of the representation is known a priori to

be lower than 1
2(1 + 1

µ(D)). That is, we are guaranteed to recover the underlying solution as long

as the global sparsity is less than a certain threshold. In light of the discussion in Section 5.3.2,

these values are pessimistic in the convolutional setting. By migrating from P0 to the P0,∞
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problem, we show next that both algorithms are in fact capable of recovering the underlying

solutions under far weaker assumptions.

Theorem 8. (Global OMP recovery guarantee using `0,∞ norm): Given the system of linear

equations X = DΓ, if a solution Γ exists satisfying

‖Γ‖0,∞ <
1

2

(
1 +

1

µ(D)

)
, (5.4)

then OMP is guaranteed to recover it.

Note that if we assume ‖Γ‖0,∞ < 1
2

(
1 + 1

µ(D)

)
, according to our uniqueness theorem, the

solution obtained by the OMP is the unique solution to the P0,∞ problem. Interestingly, under

the same conditions the BP algorithm is guaranteed to succeed as well.

Theorem 9. (Global Basis Pursuit recovery guarantee using the `0,∞ norm): For the system of

linear equations DΓ = X, if a solution Γ exists obeying

‖Γ‖0,∞ <
1

2

(
1 +

1

µ(D)

)
,

then Basis Pursuit is guaranteed to recover it.

The recovery guarantees for both pursuit methods have now become independent of the

global signal dimension and sparsity. Instead, the condition for success is given in terms of the

local concentration of non-zeros of the global sparse vector. Moreover, the number of non-zeros

allowed per stripe under the current bounds is in fact the same number previously allowed

globally. As a remark, note that we have used these two algorithms in their natural form, being

oblivious to the `0,∞ objective they are serving. Further work is required to develop OMP and

BP versions that are aware of this specific goal, potentially benefiting from it.

5.4.4 Experiments

In this subsection we intend to provide numerical results that corroborate the above presented

theoretical bounds. While doing so, we will shed light on the performance of the OMP and BP

algorithms in practice, as compared to our previous analysis.

In [SNS14] an algorithm was proposed to construct a local dictionary such that all its

aperiodic auto-correlations and cross-correlations are low. This, in our context, means that the

algorithm attempts to minimize the mutual coherence of the dictionary DL and all of its shifts,

decreasing the global mutual coherence as a result. We use this algorithm to numerically build

a dictionary consisting of two atoms (m = 2) with patch size n = 64. The theoretical lower

bound on the µ(D) presented in Equation (5.2) under this setting is approximately 0.063, and

we manage to obtain a mutual coherence of 0.09 using the aforementioned method. With these

atoms we construct a convolutional dictionary with global atoms of length N = 640.

Once the dictionary is fixed, we generate sparse vectors with random supports of (global)

cardinalities in the range [1, 300]. The non-zero entries are drawn from random independent
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Figure 5.3: Probability of success of OMP and BP at recovering the true convolutional sparse
code. The theoretical guarantee is presented on the same graph.

and identically-distributed Gaussians with mean equal to zero and variance equal to one. Given

these sparse vectors, we compute their corresponding global signals and attempt to recover them

using the global OMP and BP. We perform 500 experiments per each cardinality and present

the probability of success as a function of the representation’s `0,∞ norm. We define the success

of the algorithm as the full recovery of the true sparse vector. The results for the experiment

are presented in Figure 5.3. The theorems provided in the previous subsection guarantee the

success of both OMP and BP as long as the ‖Γ‖0,∞ ≤ 6.

As can be seen from these results, the theoretical bound is far from being tight. However,

in the traditional sparse representation model the corresponding bounds have the same loose

flavor [BDE09]. This kind of results is in fact expected when using such a worst-case analysis.

Tighter bounds could likely be obtained by a probabilistic study, which we leave for future work.

5.5 Shifted Mutual Coherence and Stripe Coherence

When considering the mutual coherence µ(D), one needs to look at the maximal correlation

between every pair of atoms in the global dictionary. One should note, however, that atoms having

a non-zero correlation must have overlapping supports, and µ(D) provides a bound for these

values independently of the amount of overlap. One could go beyond this characterization of the

convolutional dictionary by a single value and propose to bound all the inner products between

atoms for a given shift. As a motivation, in several applications one can assume that signals

are built from local atoms separated by some minimal lag, or shift. In radio communications,

for example, such a situation appears when there exists a minimal time between consecutive

transmissions on the same channel [HSL09]. In such cases, knowing how the correlation between

the atoms depends on their shifts is fundamental for the design of the dictionary, its utilization

and its theoretical analysis.
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In this section we briefly explore this direction of analysis, introducing a stronger char-

acterization of the convolutional dictionary, termed shifted mutual coherence. By being a

considerably more informative measure than the standard mutual coherence, this will naturally

lead to stronger bounds. We will only present the main points of these results here for the

sake of brevity; the interested reader can find a more detailed discussion on this matter in the

Supplementary Material.

Recall that Ω is defined as a stripe extracted from the global dictionary D. Consider the

sub-system given by xi = Ωγi, corresponding to the ith patch in X. Note that Ω can be split

into a set of 2n− 1 blocks of size n×m, where each block is denoted by Ωs, i.e.,

Ω = [Ω−n+1, . . . ,Ω−1,Ω0,Ω1, . . . ,Ωn−1],

as shown previously in Figure 5.2.

Definition 10. Define the shifted mutual coherence µs by

µs = max
i,j

|〈d0
i ,d

s
j〉|,

where d0
i is a column extracted from Ω0, dsj is extracted from Ωs, and we require5 that i 6= j if

s = 0.

The above definition can be seen as a generalization of the mutual coherence for the shift-

invariant (convolutional) local model presented in the beginning of this chapter. Indeed, µs

characterizes Ω just as µ(D) characterizes the coherence of a general dictionary. Note that if

s = 0 the above definition boils down to the traditional mutual coherence of DL, i.e., µ0 = µ(DL).

It is important to stress that the atoms used in the above definition are normalized globally

according to D and not Ω. In the Supplementary Material we comment on several interesting

properties of this measure.

Similar to Ω, γi can be split into a set of 2n− 1 vectors of length m, each denoted by γi,s

and corresponding to Ωs. In other words, γi = [γTi,−n+1, . . . ,γ
T
i,−1,γ

T
i,0,γ

T
i,1, . . . ,γ

T
i,n−1]T . Note

that previously we denoted local sparse vectors of length m by αj . Yet, we will also denote them

by γi,s in order to emphasize the fact that they correspond to the sth shift within γi. Denote the

number of non-zeros in γi as ni. We can also write ni =
n−1∑

s=−n+1

ni,s, where ni,s is the number of

non-zeros in each γi,s. With these definitions, we can now propose the following measure.

Definition 11. Define the stripe coherence as

ζ(γi) =

n−1∑
s=−n+1

ni,s µs.

According to this definition, each stripe has a coherence given by the sum of its non-zeros

weighted by the shifted mutual coherence. As a particular case, if all k non-zeros correspond

5The condition i 6= j if s = 0 is necessary so as to avoid the inner product of an atom by itself.
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to atoms in the center sub-dictionary, DL, this becomes µ0k. Note that unlike the traditional

mutual coherence, this new measure depends on the location of the non-zeros in Γ – it is

a function of the support of the sparse vector, and not just of the dictionary. As such, it

characterizes the correlation between the atoms participating in a given stripe. In what follows,

we will use the notation ζi for ζ(γi).

Having formalized these tighter constructions, we now leverage them to improve the previous

results. Although these theorems are generally sharper, they are harder to grasp. We begin

with a recovery guarantee for the OMP and BP algorithms, followed by a discussion on their

implications.

Theorem 12. (Global OMP recovery guarantee using the stripe coherence): Given the system of

linear equations X = DΓ, if a solution Γ exists satisfying

max
i

ζi = max
i

n−1∑
s=−n+1

ni,sµs <
1

2
(1 + µ0) , (5.5)

then OMP is guaranteed to recover it.

Theorem 13. (Global BP recovery guarantee using the stripe coherence): Given the system of

linear equations X = DΓ, if a solution Γ exists satisfying

max
i

ζi = max
i

n−1∑
s=−n+1

ni,sµs <
1

2
(1 + µ0) ,

then Basis Pursuit is guaranteed to recover it.

The corresponding proofs are similar to their counterparts presented in the preceding section but

require a more delicate analysis. We include the proof for the OMP variant in the Supplementary

Material, and outline the main steps required to prove the BP version.

In order to provide an intuitive interpretation for these results, the above bounds can be tied

to a concrete number of non-zeros per stripe. First, notice that requiring the maximal stripe

coherence to be less than a certain threshold is equal to requiring the same for every stripe:

∀i
n−1∑

s=−n+1

ni,sµs <
1

2
(1 + µ0) .

Multiplying and dividing the left-hand side of the above inequality by ni and rearranging the

resulting expression, we obtain

∀i ni <
1

2

1 + µ0∑n−1
s=−n+1

ni,s
ni
µs
.

Define µ̄i =
∑n−1

s=−n+1
ni,s
ni
µs. Recall that

∑n−1
s=−n+1

ni,s
ni

= 1 and as such µ̄i is simply the

(weighted) average shifted mutual coherence in the ith stripe. Putting this definition into the
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above condition, the inequality becomes

∀i ni <
1

2

(
1

µ̄i
+
µ0

µ̄i

)
.

Thus, the condition in (5.5) boils down to requiring the sparsity of all stripes to be less than a

certain number. Naturally, this inequality resembles the one presented in the previous section

for the OMP and BP guarantees. In the Supplementary Material we prove that under the

assumption that µ(D) = µ0, the shifted mutual coherence condition is at least as strong as the

original one.

5.6 From Global to Local Stability Analysis

One of the cardinal motivations for this work was a series of recent practical methods addressing

the convolutional sparse coding problem; and in particular, the need for their theoretical

foundation. However, our results are as of yet not directly applicable to these, as we have

restricted our analysis to the ideal case of noiseless signals. This is the path we undertake in the

following sections, exploring the question of whether the convolutional model remains stable in

the presence of noise.

Assume a clean signal X, which admits a sparse representation Γ in terms of the convolutional

dictionary D, is contaminated with noise E (of bounded energy, ‖E‖2 ≤ ε) to create Y = DΓ+E.

Given this noisy signal, one could propose to recover the true representation Γ, or a vector

close to it, by solving the P ε0 problem. In this context, as mentioned in the previous section,

several theoretical guarantees have been proposed in the literature. As an example, consider the

stability results presented in the seminal work of [DET06]. Therein, it was shown that assuming

the total number of non-zeros in Γ is less than 1
2

(
1 + 1

µ(D)

)
, the distance between the solution

to the P ε0 problem, Γ, and the true sparse vector, Γ, satisfies

‖Γ− Γ‖22 ≤
4ε2

1− µ(D)(2‖Γ‖0 − 1)
. (5.6)

In the context of our convolutional setting, however, this result provides a weak bound as it

constrains the total number of non-zeros to be below a certain threshold, which scales with the

local filter size n.

We now re-define the P ε0 problem into a different one, capturing the convolutional structure

by relying on the `0,∞ norm instead. Consider the problem:

(P ε0,∞) : min
Γ

‖Γ‖0,∞ s.t. ‖Y −DΓ‖2 ≤ ε.

In words, given a noisy measurement Y, we seek for the `0,∞-sparsest representation vector that

explains this signal up to an ε error. In what follows, we address the theoretical aspects of this

problem and, in particular, study the stability of its solutions and practical yet secured ways for

retrieving them.
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5.7 Theoretical Analysis of Corrupted Signals

5.7.1 Stability of the P ε
0,∞ Problem

As expected, one cannot guarantee the uniqueness of the solution to the P ε0,∞ problem, as was

done for the P0,∞. Instead, in this subsection we shall provide a stability claim that guarantees

the found solution to be close to the underlying sparse vector that generated Y. In order to

provide such an analysis, we commence by arming ourselves with the necessary mathematical

tools.

Definition 14. Let D be a convolutional dictionary. Consider all the sub matrices DT , obtained

by restricting the dictionary D to a support T with an `0,∞ norm equal to k. Define δk as the

smallest quantity such that

∀∆ (1− δk)‖∆‖22 ≤ ‖DT∆‖22 ≤ (1 + δk)‖∆‖22

holds true for any choice of the support. Then, D is said to satisfy k-SRIP (Stripe-RIP) with

constant δk.

Given a matrix D, similar to the Stripe-Spark, computing the SRIP is hard or practically

impossible. Thus bounding it using the mutual coherence is of practical use.

Theorem 15. (Upper bounding the SRIP via the mutual coherence): For a convolutional dictio-

nary D with global mutual coherence µ(D), the SRIP can be upper-bounded by

δk ≤ (k − 1)µ(D).

Assume a sparse vector Γ is multiplied by D and then contaminated by a vector E, generating

the signal Y = DΓ + E, such that ‖Y −DΓ‖22 ≤ ε2. Suppose we solve the P ε0,∞ problem and

obtain a solution Γ̂. How close is this solution to the original Γ? The following theorem provides

an answer to this question.

Theorem 16. (Stability of the solution to the P ε0,∞ problem): Consider a sparse vector Γ such

that ‖Γ‖0,∞ = k < 1
2

(
1 + 1

µ(D)

)
, and a convolutional dictionary D satisfying the SRIP property

for `0,∞ = 2k with coefficient δ2k. Then, the distance between the true sparse vector Γ and the

solution to the P ε0,∞ problem Γ̂ is bounded by

‖Γ− Γ̂‖22 ≤
4ε2

1− δ2k
≤ 4ε2

1− (2k − 1)µ(D)
. (5.7)

One should wonder if the new guarantee presents any advantage when compared to the

bound based on the traditional RIP. Looking at the original stability claim for the global system,

as discussed in Section 5.3, the reader should compare the assumptions on the sparse vector Γ,

as well as the obtained bounds on the distance between the estimates and the original vector.

95

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 P

h.
D

. T
he

si
s 

 P
H

D
-2

01
8-

01
.r

ev
is

ed
 -

 2
01

8



The stability claim in the P ε0 problem is valid under the condition

‖Γ‖0 <
1

2

(
1 +

1

µ(D)

)
.

In contrast, the stability claim presented above holds whenever

‖Γ‖0,∞ <
1

2

(
1 +

1

µ(D)

)
.

This allows for significantly more non-zeros in the global signal. Furthermore, as long as the

above hold, and comparing Equations (5.6) and (5.25), we have that

4ε2

1− (2‖Γ‖0,∞ − 1)µ(D)
� 4ε2

1− (2‖Γ‖0 − 1)µ(D)
,

since generally ‖Γ‖0,∞ � ‖Γ‖0. This inequality implies that the above developed bound is

(usually much) lower than the traditional one. In other words, the bound on the distance to the

true sparse vector is much tighter and far more informative under the `0,∞ setting.

5.7.2 Stability Guarantee of OMP

Hitherto, we have shown that the solution to the P ε0,∞ problem will be close to the true sparse

vector Γ. However, it is also important to know whether this solution can be approximated by

pursuit algorithms. In this subsection, we address such a question for the OMP, extending the

analysis presented to the noisy setting.

In [DET06], a claim was provided for the OMP, guaranteeing the recovery of the true support

of the underlying solution if

‖Γ‖0 <
1

2

(
1 +

1

µ(D)

)
− 1

µ(D)
· ε

|Γmin|
,

|Γmin| being the minimal absolute value of a (non-zero) coefficients in Γ. This result comes

to show the importance of both the sparsity of Γ and the signal-to-noise ratio, which relates

to the term ε/|Γmin|. In the context of our convolutional setting, this result provides a weak

bound for two different reasons. First, the above bound restricts the total number of non-zeros

in the representation of the signal. From Section 5.4, it is natural to seek for an alternative

condition for the success of this pursuit relying on the `0,∞ norm instead. Second, notice that the

rightmost term in the above bound divides the global error energy by the minimal coefficient (in

absolute value) in Γ. In the convolutional scenario, the energy of the error ε is a global quantity,

while the minimal coefficient |Γmin| is a local one – thus making this term enormous, and the

corresponding bound nearly meaningless. As we show next, one can harness the inherent locality

of the atoms in order to replace the global quantity in the numerator with a local one: εL.

Theorem 17. (Stable recovery of global OMP in the presence of noise): Suppose a clean signal

X has a representation DΓ, and that it is contaminated with noise E to create the signal
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Y = X + E, such that ‖Y−X‖2 ≤ ε. Denote by εL the highest energy of all n-dimensional local

patches extracted from E. Assume Γ satisfies

‖Γ‖0,∞ <
1

2

(
1 +

1

µ(D)

)
− 1

µ(D)
· εL
|Γmin|

, (5.8)

where |Γmin| is the minimal entry in absolute value of the sparse vector Γ. Denoting by ΓOMP

the solution obtained by running OMP for ‖Γ‖0 iterations, we are guaranteed that

1. OMP will find the correct support;

2. ‖ΓOMP − Γ‖22 ≤ ε2

1−µ(D)(‖Γ‖0,∞−1) .

The proof of this theorem is presented in the Supplementary Material, and the derivations

therein are based on the analysis presented in [DET06], generalizing the study to the convolutional

setting. Note that we have assumed that the OMP algorithm runs for ‖Γ‖0 iterations. We could

also propose a different approach, however, using a stopping criterion based on the norm of the

residual. Under such setting, the OMP would run until the energy of the global residual is less

than the energy of the noise, given by ε2.

5.7.3 Stability Guarantee of Basis Pursuit Denoising via ERC

A theoretical motivation behind relaxing the `0,∞ norm to the convex `1 was already established

in Section 5.4, showing that if the former is low, the BP algorithm is guaranteed to succeed.

When moving to the noisy regime, the BP is naturally extended to the Basis Pursuit DeNoising

(BPDN) algorithm6, which in its Lagrangian form is defined as follows

min
Γ

1

2
‖Y −DΓ‖22 + λ‖Γ‖1. (5.9)

Similar to how BP was shown to approximate the solution to the P0,∞ problem, in what follows

we will prove that the BPDN manages to approximate the solution to the P ε0,∞ problem.

Assuming the ERC is met, the stability of BP was proven under various noise models and

formulations in [Tro06]. By exploiting the convolutional structure used throughout our analysis,

we now show that the ERC is met given that the `0,∞ norm is small, tying the aforementioned

results to our story.

Theorem 18. (ERC in the convolutional sparse model): For a convolutional dictionary D with

mutual coherence µ(D), the ERC condition is met for every support T that satisfies

‖T ‖0,∞ <
1

2

(
1 +

1

µ(D)

)
.

Based on this and the analysis presented in [Tro06], we present a stability claim for the

Lagrangian formulation of the BP problem as stated in Equation (5.9).

6Note that an alternative to the BPDN extension is that of the Dantzig Selector algorithm. One can envision
a similar analysis to the one presented here for this algorithm as well.
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Theorem 19. (Stable recovery of global Basis Pursuit in the presence of noise): Suppose a clean

signal X has a representation DΓ, and that it is contaminated with noise E to create the signal

Y = X + E. Denote by εL the highest energy of all n-dimensional local patches extracted from

E. Assume Γ satisfies

‖Γ‖0,∞ ≤
1

3

(
1 +

1

µ(D)

)
. (5.10)

Denoting by ΓBP the solution to the Lagrangian BP formulation with parameter λ = 4εL, we

are guaranteed that

1. The support of ΓBP is contained in that of Γ.

2. ‖ΓBP − Γ‖∞ < 15
2 εL.

3. In particular, the support of ΓBP contains every index i for which |Γi| > 15
2 εL.

4. The minimizer of the problem, ΓBP, is unique.

The proof for both of the above, inspired by the derivations in [Ela10] and [Tro06], are presented

in the Supplementary Material.

The benefit of this over traditional claims is, once again, the replacement of the `0 with the

`0,∞ norm. Moreover, this result bounds the difference between the entries in ΓBP and Γ in

terms of a local quantity – the local noise level εL. As a consequence, all atoms with coefficients

above this local measure are guaranteed to be recovered.

The implications of the above theorem are far-reaching as it provides a sound theoretical

back-bone for all works that have addressed the convolutional BP problem in its Lagrangian

form [BEL13, Woh16, BL14, HHW15, KF14]. In Section 5.8 we will propose two additional

algorithms for solving the global BP efficiently by working locally, and these methods would

benefit from this theoretical result as well. As a last comment, a different and perhaps more

appropriate convex relaxation for the `0,∞ norm could be suggested, such as the `1,∞ norm.

This, however, remains one of our future work challenges.

5.7.4 Experiments

Following the above analysis, we now provide a numerical experiment demonstrating the above

obtained bounds. The global dictionary employed here is the same as the one used for the

noiseless experiments in Section 5.4, with mutual coherence µ(D) = 0.09, local atoms of length

n = 64 and global ones of size N = 640. We sample random sparse vectors with cardinality

between 1 and 500, with entries drawn from a uniform distribution with range [−a, a], for varying

values of a. Given these vectors, we construct global signals and contaminate them with noise.

The noise is sampled from a zero-mean unit-variance white Gaussian distribution, and then

normalized such that ‖E‖2 = 0.1.

In what follows, we will first center our attention on the bounds obtained for the OMP

algorithm, and then proceed to the ones corresponding to the BP. Given the noisy signals, we

run OMP with a sparsity constraint, obtaining ΓOMP. For each realization of the global signal,
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Figure 5.4: The distance ‖ΓOMP − Γ‖2 as a function of the `0,∞ norm, and the corresponding
theoretical bound.

we compute the minimal entry (in absolute value) of the global sparse vector, |Γmin|, and its

`0,∞ norm. In addition, we compute the maximal local energy of the noise, εL, corresponding to

the highest energy of a n-dimensional patch of E.

Recall that the theorem in the previous subsection poses two claims: 1) the stability of

the result in terms of ‖ΓOMP − Γ‖2; and 2) the success in recovering the correct support. In

Figure 5.4 we investigate the first of these points, presenting the distance between the estimated

and the true sparse codes as a function of the `0,∞ norm of the original vector. As it is clear

from the graph, the empirical distances are below the theoretical bound depicted in black,

given by ε2

1−µ(D)(‖Γ‖0,∞−1) . According to the theorem’s assumption, the sparse vector should

satisfy ‖Γ‖0,∞ < 1
2

(
1 + 1

µ(D)

)
− 1

µ(D) ·
ε
L

|Γmin| . The red dashed line delimits the area where this

is met, with the exception that we omit the second term in the previous expression, as done

previously in [DET06]. This disregards the condition on the |Γmin| and εL (which depends on

the realization). Yet, the empirical results remain stable.

In order to address the successful recovery of the support, we compute the ratio
ε
L

|Γmin| for

each realization in the experiment. In Figure 5.5(a), for each sample we denote by • or × the

success or failure in recovering the support, respectively. Each point is plotted as a function of

its `0,∞ norm and its corresponding ratio. The theoretical condition for the success of the OMP

can be rewritten as
ε
L

|Γmin| <
µ(D)

2

(
1 + 1

µ(D)

)
− µ(D)‖Γ‖0,∞, presenting a bound on the ratio

ε
L

|Γmin| as a function of the `0,∞ norm. This bound is depicted with a blue line, indicating that
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Figure 5.5: The ratio εL/|Γmin| as a function of the `0,∞ norm, and the theoretical bound for
the successful recovery of the support, for both the OMP (top) and BP (bottom) algorithms.

the empirical results agree with the theoretical claims.

One can also observe two distinct phase transitions in Figure 5.5(a). On the one hand, noting

that the y axis can be interpreted as the inverse of the noise-to-signal ratio (in some sense), we

see that once the noise level is too high, OMP fails in recovering the support7. On the other

hand, similar to what was presented in the noiseless case, once the `0,∞ norm becomes too large,

the algorithm is prone to fail in recovering the support.

We now shift to the empirical verification of the guarantees obtained for the BP. We employ

the same dictionary as in the experiment above, and the signals are constructed in the same

manner. We use the implementation of the LARS algorithm within the SPAMS package8 in its

Lagrangian formulation with the theoretically justified parameter λ = 4εL, obtaining ΓBP. Once

again, we compute the quantities: |Γmin|, ‖Γ‖0,∞ and εL, and depict them in Figure 5.5(b).

Theorem 19 states that the `∞ distance between the BP solution and the true sparse vector

is below 15
2 εL. In Figure 5.6 we depict the ratio ‖ΓBP−Γ‖∞

εL
for each realization, verifying it is

indeed below 15
2 as long as the `0,∞ norm is below 1

3

(
1 + 1

µ(D)

)
≈ 4. Next, we would like to

corroborate the assertions regarding the recovery of the true support. To this end, note that the

7Note that the abrupt change in this phase-transition area is due to the log scale of the y axis.
8Freely available from http://spams-devel.gforge.inria.fr/.
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theorem guarantees that all entries satisfying |Γi| > 15
2 εL shall be recovered by the BP algorithm.

Alternatively, one can state that the complete support must be recovered as long as εL
|Γmin| <

2
15 .

To verify this claim, we plot this ratio for each realization as function of the `0,∞ norm in Figure

5.5(b), marking every point according to the success or failure of BP (in recovering the complete

support). As evidenced in [Ela10], OMP seems to be far more accurate than the BP in recovering

the true support. As one can see by comparing Figure 5.5(a) and 5.5(b), BP fails once the `0,∞

norm goes beyond 20, while OMP succeeds all the way until ‖Γ‖0,∞ = 40.

5.8 From Global Pursuit to Local Processing

We now turn to analyze the practical aspects of solving the P ε0,∞ problem given the relationship

Y = DΓ+E. Motivated by the theoretical guarantees of success derived in the previous sections,

the first näıve approach would be to employ global pursuit methods such as OMP and BP.

However, these are computationally demanding as the dimensions of the convolutional dictionary

are prohibitive for high values of N , the signal length.

As an alternative, one could attempt to solve the P ε0,∞ problem using a patch-based processing

scheme. In this case, for example, one could suggest to solve a local and relatively cheaper

pursuit for every patch in the signal (including overlaps) using the local dictionary DL. It is

clear, however, that this approach will not work well under the convolutional model, because

atoms used in overlapping patches are simply not present in DL. On the other hand, one could

turn to employ Ω as the local dictionary, but this is prone to fail in recovering the correct

support of the atoms. To see this more clearly, note that there is no way to distinguish between

any of the atoms having only one entry different than zero; i.e., those appearing on the extremes

of Ω in Figure 5.2.

As we can see, neither the näıve global approach, nor the simple patch-based processing,

provide an effective strategy. Several questions arise from this discussion: Can we solve the

global pursuit problem using local patch-based processing? Can the proposed algorithm rely

merely on the low dimensional dictionaries DL or Ω while still fully solving the global problem?

If so, in what form should the local patches communicate in order to achieve a global consensus?

In what follows, we address these issues and provide practical and globally optimal answers.

5.8.1 Global to Local Through Bi-Level Consensus

When dealing with global problems which can be solved locally, a popular tool of choice is the

Alternating Direction Method of Multipliers (ADMM) [BPC+11] in its consensus formulation.

In this framework, a global objective can be decomposed into a set of local and distributed

problems which attempt to reach a global agreement. We will show that this scheme can be

effectively applied in the convolutional sparse coding context, providing an algorithm with a

bi-level consensus interpretation.

The ADMM has been extensively used throughout the literature in convolutional sparse

coding. However, as mentioned in the introduction, it has been usually applied in the Fourier
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Figure 5.6: The distance ‖ΓBP −Γ‖∞/εL as a function of the `0,∞ norm, and the corresponding
theoretical bound.

domain. As a result, the sense of locality is lost in these approaches and the connection to

traditional (local) sparse coding is non-existent. On the contrary, the pursuit method we propose

here is carried out in a localized fashion in the original domain, while still benefiting from the

advantages of ADMM.

Recall the `1 relaxation of the global pursuit, given in Eq. (5.9). Note that the noiseless model

is contained in this formulation as a particular case when λ tends to zero. Using the separability

of the `1 norm, ‖Γ‖1 =
∑

i ‖αi‖1, where αi are m−dimensional local sparse vectors, as previously

defined. In addition, using the fact that RiDΓ = Ωγi, we apply a local decomposition on the

first term as well. This results in

min
{αi},{γi}

1

2n

∑
i

‖RiY −Ωγi‖22 + λ
∑
i

‖αi‖1,

where we have divided the first sum by the number of contributions per entry in the global

signal, which is equal to the patch size n. Note that the above minimization is not equivalent to

the original problem in Equation (5.9) since no explicit consensus is enforced between the local

variables. Recall that the different γi overlap, and so we must enforce them to agree. In addition,

αi should be constrained to be equal to the center of the corresponding γi. Based on these

observations, we modify the above problem by adding the appropriate constraints, obtaining

min
{αi},{γi},Γ

1

2n

∑
i

‖RiY −Ωγi‖22 + λ
∑
i

‖αi‖1

s.t.

Qγi = αi

SiΓ = γi

∀i,

where Q extracts the center m coefficients corresponding to αi from γi, and Si extracts the ith

stripe γi from Γ.
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Algorithm 5.1 Locally operating global pursuit via ADMM.

while not converged do

Local Thresholding: αi ← min
α

λ‖α‖1 + ρ
2‖Qγi −α + ui‖22

Stripe Projection:

γi ←M−1

(
1

n
ΩTRiY + ρ(SiΓ + ūi) + ρQT (αi − ui)

)
,

where M = ρQTQ + 1
nΩTΩ + ρI

Global Update:
Γ←

(∑
i S

T
i Si
)−1∑

i S
T
i (γi − ūi)

Dual Variables Update:
ui ← ui + (Qγi −αi) ūi ← ūi + (SiΓ− γi)

end

Defining fi(γi) = 1
2n‖RiY−Ωγi‖22 and g(αi) = λ‖αi‖1, the above problem can be minimized

by employing the ADMM algorithm, as depicted in Algorithm 5.1. This is a two-level local-global

consensus formulation: each m dimensional vector αi is enforced to agree with the center of

its corresponding (2n− 1)m dimensional γi, and in addition, all γi are required to agree with

each other as to create a global Γ. The above can be shown to be equivalent to the standard

two-block ADMM formulation [BPC+11]. Each iteration of this method can be divided into

four steps:

1. Local sparse coding that updates αi (for all i), which amounts to a simple soft thresholding

operation.

2. Solution of a linear system of equations for updating γi (for all i), which boils down to a

simple multiplication by a constant matrix.

3. Update of the global sparse vector Γ, which aggregates the γi by averaging.

4. Update of the dual variables.

As can be seen, the ADMM provides a simple way of breaking the global pursuit into local

operations. Moreover, the local coding step is just a projection problem onto the `1 ball, which

can be solved through simple soft thresholding, implying that there is no complex pursuit

involved.

Since we are in the `1 case, the function g is convex, as are the functions fi. Therefore, the

above is guaranteed to converge to the minimizer of the global BP problem. As a result, we

benefit from the theoretical guarantees derived in previous sections. One could attempt, in

addition, to enforce an `0 penalty instead of the `1 norm on the global sparse vector. Despite

the fact that no convergence guarantees could be claimed under such formulation, the derivation

of the algorithm remains practically the same, with the only exception that the soft thresholding

is replaced by a hard one.
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Algorithm 5.2 Global pursuit using local processing via iterative soft thresholding.

∀i r0
i = RiY, α0

i = 0 ;
k = 1 ;
while not converged do

Local Coding:

∀i αk
i = Sλ/c

(
αk−1
i + 1

c DT
L rk−1

i

)
Computation of the Patch Averaging Aggregation:
X̂k =

∑
i R

T
i DLα

k
i ;

Update of the Residuals:

∀i rki = Ri

(
Y − X̂k

)
;

k = k + 1;
end

5.8.2 An Iterative Soft Thresholding Approach

While the above algorithm suggests a way to tackle the global problem in a local fashion,

the matrix involved in the stripe projection stage, Z−1, is relatively large when compared to

the dimensions of DL. As a consequence, the bi-level consensus introduces an extra layer of

complexity to the algorithm. In what follows, we propose an alternative method based on the

Iterative Soft Thresholding (IST) algorithm that relies solely on multiplications by DL and

features a simple intuitive interpretation and implementation. A similar approach for solving

the convolutional sparse coding problem was suggested in [CPR13]. Our main concern here

is to provide insights into local alternatives for the global sparse coding problem and their

guarantees, whereas the work in [CPR13] focused on the optimizations aspects of this pursuit

from an entirely global perspective.

Let us consider the IST algorithm [DDDM04] which minimizes the global objective in

Equation (5.9), by iterating the following updates

Γk = Sλ/c
(

Γk−1 +
1

c
DT (Y −DΓk−1)

)
,

where S applies an entry-wise soft thresholding operation with threshold λ/c. Interpreting the

above as a projected gradient descent, the coefficient c relates to the gradient step size and

should be set according to the maximal singular value of the matrix D in order to guarantee

convergence [DDDM04].

The above algorithm might at first seem undesirable due to the multiplications of the residual

Y −DΓk−1 with the global dictionary D. Yet, as we show in the Supplementary Material, such

a multiplication does not need to be carried out explicitly due to the convolutional structure

imposed on our dictionary. In fact, the above is mathematical equivalent to an algorithm that
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performs local updates given by

αk
i = Sλ/c

(
αk−1
i +

1

c
DT
L rk−1

i

)
,

where rki = Ri(Y −DΓk−1) is a patch from the global residual. This scheme is depicted in

Algorithm 5.2.
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Figure 5.7: The sparse vector Γ after the global update stage in the ADMM algorithm at
iterations 20 (top), 200 (middle) and 1000 (bottom). An `1 norm formulation was used for this

experiment, in a noiseless setting.

From an optimization point of view, one can interpret each iteration of the above as a scatter

and gather process: local residuals are first extracted and scattered to different nodes where
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they undergo shrinkage operations, and the results are then gathered for the re-computation

of the global residual. From an image processing point of view, this algorithm decomposes a

signal into overlapping patches, restores these separately and then aggregates the result for the

next iteration. Notably, this is very reminiscent of the patch averaging scheme, as described in

the introduction, and it shows for the first time the relation between patch averaging and the

convolutional sparse model. While the former processes every patch once and independently, the

above algorithm indicates that one must iterate this process if one is to reach global consensus.

Assuming the step size is chosen appropriately, the above algorithm is also guaranteed to

converge to the solution of the global BP. As such, our theoretical analysis holds in this case as

well. Alternatively, one could attempt to employ an `0 approach, using a global iterative hard

thresholding algorithm. In this case, however, there are no theoretical guarantees in terms of

the `0,∞ norm. Still, we believe that a similar analysis to the one taken throughout this work

could lead to such claims.

5.8.3 Experiments

Next, we proceed to provide empirical results for the above described methods. To this end, we

take an undercomplete DCT dictionary of size 25× 5, and use it as DL in order to construct

the global convolutional dictionary D for a signal of length N = 300. We then generate a

random global sparse vector Γ with 50 non-zeros, with entries distributed uniformally in the

range [−2,−1] ∪ [1, 2], creating the signal X = DΓ.

We first employ the ADMM and IST algorithms in a noiseless scenario in order to minimize

the global BP and find the underlying sparse vector. Since there is no noise added in this case,

we decrease the penalty parameter λ progressively throughout the iterations, making this value

tend to zero as suggested in the previous subsection. In Figure 5.7 we present the evolution

of the estimated Γ̂ for the ADMM solver throughout the iterations, after the global update

stage. Note how the algorithm progressively increases the consensus and eventually recovers the

true sparse vector. Equivalent plots are obtained for the IST method, and these are therefore

omitted.

To extend the experiment to the noisy case, we contaminate the previous signal with additive

white Gaussian noise of different standard deviations: σ = 0.02, 0.04, 0.06. We then employ

both local algorithms to solve the corresponding BPDN problems, and analyze the `2 distance

between their estimated sparse vector and the true one, as a function of time. These results are

depicted in Figure 5.8, where we include for completion the distance of the solution achieved by

the global BP in the noisy cases. A few observations can be drawn from these results. Note that

both algorithms converge to the solution of the global BP in all cases. In particular, the IST

converges significantly faster than the ADMM method. Interestingly, despite the later requiring

a smaller number of iterations to converge, these are relatively more expensive than those of the

IST, which employs only multiplications by the small DL.
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Figure 5.8: Distance between the estimate Γ̂ and the underlying solution Γ as a function of
time for the IST and the ADMM algorithms compared to the solution obtained by solving the

global BP.

5.9 Chapter Conclusion

In this chapter we have presented a formal analysis of the convolutional sparse representation

model. In doing so, we have reformulated the objective of the global pursuit, introducing the

`0,∞ norm and the corresponding P0,∞ problem, and proven the uniqueness of its solution. By

migrating from the P0 to the P0,∞ problem, we were able to provide meaningful guarantees

for the success of popular algorithms in the noiseless case, improving on traditional bounds

that were shown to be very pessimistic under the convolutional case. In order to achieve such

results, we have generalized a series of concepts such as Spark and the mutual coherence to their

counterparts in the convolutional setting.

Striding on the foundations paved in the first part of this work, we moved on to present a

series of stability results for the convolutional sparse model in the presence of noise, providing

guarantees for corresponding pursuit algorithms. These were possible due to our migration from

the `0 to the `0,∞ norm, together with the generalization and utilization of concepts such as

RIP and ERC. Seeking for a connection between traditional patch-based processing and the

convolutional sparse model, we finally proposed two efficient methods that solve the global
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pursuit while working locally.

We envision many possible directions of future work, and here we outline some of them:

• We could extend our study, which considers only worst-case scenarios, to an average-

performance analysis. By assuming more information about the model, it might be possible

to quantify the probability of success of pursuit methods in the convolutional case. Such

results would close the gap between current bounds and empirical results.

• From an application point of view, we envision that interesting algorithms could be proposed

to tackle real problems in signal and image processing while using the convolutional model.

We note that while convolutional sparse coding has been applied to various problems,

simple inverse problems such as denoising have not yet been properly addressed. We

believe that the analysis presented in this work could facilitate the development of such

algorithms by showing how to leverage on the subtleties of this model.

• Interestingly, even though we have declared the P0,∞ problem as our goal, at no point

have we actually attempted to tackle it directly. What we have shown instead is that

popular algorithms succeed in finding its solution. One could perhaps propose an algorithm

specifically tailored for solving this problem – or its convex relaxation (`1,∞). Such a

method might be beneficial from both a theoretical and a practical aspect.

All these points, and more, are matter of current research.
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5.10 Chapter Appendix

5.10.1 On the `0,∞ Norm

Theorem 20. The triangle inequality holds for the `0,∞ norm.

Proof. Let Γ1 and Γ2 be two global sparse vectors. Denote the ith stripe extracted from each as

γ1
i and γ2

i , respectively. Notice that

‖Γ1 + Γ2‖0,∞ = max
i
‖γ1

i + γ2
i ‖0 ≤ max

i

(
‖γ1

i ‖0 + ‖γ2
i ‖0
)

≤ max
i
‖γ1

i ‖0 + max
i
‖γ2

i ‖0 = ‖Γ1‖0,∞ + ‖Γ2‖0,∞.

In the first inequality we have used the triangle inequality of the `0 norm.

5.10.2 Theoretical Analysis of Ideal Signals

Theorem 5. (Uncertainty and uniqueness using Stripe-Spark): Let D be a convolutional dictio-

nary with Stripe-Spark σ∞. If a solution Γ obeys ‖Γ‖0,∞ < 1
2σ∞, then this is necessarily the

global optimum for the P0,∞ problem for the signal DΓ.

Proof. Let Γ̂ 6= Γ be an alternative solution. Then D
(
Γ− Γ̂

)
= 0. By definition of the

Stripe-Spark

‖Γ− Γ̂‖0,∞ ≥ σ∞.

Using the triangle inequality of the `0,∞ norm,

‖Γ‖0,∞ + ‖Γ̂‖0,∞ ≥ ‖Γ− Γ̂‖0,∞ ≥ σ∞.

This result poses an uncertainty principle for `0,∞ sparse solutions of the system X = DΓ,

suggesting that if a very sparse solution is found, all alternative solutions must be much denser.

Since ‖Γ‖0,∞ < 1
2σ∞, we must have that ‖Γ̂‖0,∞ > 1

2σ∞, or in other words, every solution other

than Γ has higher `0,∞ norm, thus making Γ the global solution for the P0,∞ problem.

Theorem 6. (Lower bounding the Stripe-Spark via the mutual coherence): For a convolutional

dictionary D with mutual coherence µ(D), the Stripe-Spark can be lower-bounded by

σ∞(D) ≥ 1 +
1

µ(D)
.

Proof. Let ∆ be a vector such that ∆ 6= 0 and D∆ = 0. Note that we can write

DT∆T = 0, (5.11)

where ∆T is the vector ∆ restricted to its support T , and DT is the dictionary composed of

the corresponding atoms. Consider now the Gram matrix, GT = DT
TDT , which corresponds

to a portion extracted from the global Gram matrix DTD. The relation in Equation (5.11)
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suggests that DT has a nullspace, which implies that its Gram matrix must have at least one

eigenvalue equal to zero. Using Lemma 1, the lower bound on the eigenvalues of GT is given by

1−(k−1)µ(D), where k is the `0,∞ norm of ∆. Therefore, we must have that 1−(k−1)µ(D) ≤ 0,

or equally k ≥ 1 + 1
µ(D) . We conclude that a vector ∆, which is in the null-space of D, must

always have an `0,∞ norm of at least 1 + 1
µ(D) , and so the Stripe-Spark σ∞ is also bounded by

this number.

Theorem 8. (Global OMP recovery guarantee using `0,∞ norm): Given the system of linear

equations X = DΓ, if a solution Γ exists satisfying

‖Γ‖0,∞ <
1

2

(
1 +

1

µ(D)

)
, (5.12)

then OMP is guaranteed to recover it.

Proof. Denoting by T the support of the solution Γ, we can write

X = DΓ =
∑
t∈T

Γtdt. (5.13)

Suppose, without loss of generality, that the sparsest solution has its largest coefficient (in

absolute value) in Γi. For the first step of the OMP to choose one of the atoms in the support,

we require

|dTi X| > max
j /∈T
|dTj X|.

Substituting Equation (5.13) in this requirement we obtain∣∣∣∣∣∑
t∈T

Γtd
T
t di

∣∣∣∣∣ > max
j /∈T

∣∣∣∣∣∑
t∈T

Γtd
T
t dj

∣∣∣∣∣ . (5.14)

Using the reverse triangle inequality, the assumption that the atoms are normalized, and that

|Γi| ≥ |Γt|, we construct a lower bound for the left hand side:∣∣∣∣∣∑
t∈T

Γtd
T
t di

∣∣∣∣∣ ≥|Γi| − ∑
t∈T ,t6=i

|Γt| · |dTt di|

≥|Γi| − |Γi|
∑

t∈T ,t 6=i
|dTt di|.

Consider the stripe which completely contains the ith atom as shown in Figure 5.9. Notice that

dTt di is zero for every atom too far from di because the atoms do not overlap. Denoting the

stripe which fully contains the ith atom as p(i) and its support as Tp(i), we can restrict the

summation as: ∣∣∣∣∣∑
t∈T

Γtd
T
t di

∣∣∣∣∣ ≥ |Γi| − |Γi| ∑
t∈Tp(i),t6=i

|dTt di|. (5.15)

We can bound the right side by using the number of non-zeros in the support Tp(i), denoted by
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Γ𝑖 
𝐝𝑖 

𝛀 

Figure 5.9: The p(i) stripe of atom di.

np(i), together with the definition of the mutual coherence, obtaining:

∣∣∣∣∣∑
t∈T

Γtd
T
t di

∣∣∣∣∣ ≥ |Γi| − |Γi| · (np(i) − 1) · µ(D).

Using the definition of the `0,∞ norm, we obtain∣∣∣∣∣∑
t∈T

Γtd
T
t di

∣∣∣∣∣ ≥ |Γi| − |Γi| · (‖Γ‖0,∞ − 1) · µ(D).

Now, we construct an upper bound for the right hand side of Equation (5.14), using the triangle

inequality and the fact that |Γi| is the maximal value in the sparse vector:

max
j /∈T

∣∣∣∣∣∑
t∈T

Γtd
T
t dj

∣∣∣∣∣ ≤ max
j /∈T

∑
t∈T
|Γt| · |dTt dj | (5.16)

≤ |Γi|max
j /∈T

∑
t∈T
|dTt dj |.

Relying on the same rational as above, we obtain:

max
j /∈T

∣∣∣∣∣∑
t∈T

Γtd
T
t dj

∣∣∣∣∣ ≤ |Γi|max
j /∈T

∑
t∈Tp(j)

|dTt dj |

≤ |Γi|max
j /∈T

np(j) · µ(D) ≤ |Γi| · ‖Γ‖0,∞ · µ(D).

111

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 P

h.
D

. T
he

si
s 

 P
H

D
-2

01
8-

01
.r

ev
is

ed
 -

 2
01

8



Using both bounds, we get∣∣∣∣∣∑
t∈T

Γtd
T
t di

∣∣∣∣∣ ≥ |Γi| − |Γi| · (‖Γ‖0,∞ − 1) · µ(D)

> |Γi| · ‖Γ‖0,∞µ(D) ≥ max
j /∈T

∣∣∣∣∣∑
t∈T

Γtd
T
t dj

∣∣∣∣∣ .
Thus,

1− (‖Γ‖0,∞ − 1) · µ(D) > ‖Γ‖0,∞ · µ(D).

From this we obtain the requirement stated in the theorem. Thus, this condition guarantees the

success of the first OMP step, implying it will choose an atom inside the true support.

The next step in the OMP algorithm is an update of the residual. This is done by decreasing

a term proportional to the chosen atom (or atoms within the correct support in subsequent

iterations) from the signal. Thus, this residual is also a linear combination of the same atoms

as the original signal. As a result, the `0,∞ norm of the residual’s representation is less or

equal than the one of the true sparse code Γ. Using the same set of steps we obtain that the

condition on the `0,∞ norm (5.12) guarantees that the algorithm chooses again an atom from

the true support of the solution. Furthermore, the orthogonality enforced by the least-squares

step guarantees that the same atom is never chosen twice. As a result, after ‖Γ‖0 iterations the

OMP will find all the atoms in the correct support, reaching a residual equal to zero.

Theorem 9. (Global Basis Pursuit recovery guarantee using the `0,∞ norm): For the system of

linear equations DΓ = X, if a solution Γ exists obeying

‖Γ‖0,∞ <
1

2

(
1 +

1

µ(D)

)
,

then Basis Pursuit is guaranteed to recover it.

Proof. Define the following set

C =

{
Γ̂

∣∣∣∣∣ Γ̂ 6= Γ, D(Γ̂− Γ) = 0

‖Γ̂‖1 ≤ ‖Γ‖1, ‖Γ̂‖0,∞ > ‖Γ‖0,∞

}
.

This set contains all alternative solutions which have lower or equal `1 norm and higher ‖ · ‖0,∞
norm. If this set is non-empty, the solution of the basis pursuit is different from Γ, implying

failure. In view of our uniqueness result, and the condition posed in this theorem on the `0,∞

cardinality of Γ, every solution Γ̂ which is not equal to Γ must have a higher ‖ · ‖0,∞ norm.

Thus, we can omit the requirement ‖Γ̂‖0,∞ > ‖Γ‖0,∞ from C.

By defining ∆ = Γ̂− Γ, we obtain a shifted version of the set,

Cs =

{
∆

∣∣∣∣∣ ∆ 6= 0, D∆ = 0

0 ≥ ‖∆ + Γ‖1 − ‖Γ‖1

}
.
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In what follows, we will enlarge the set Cs and prove that it remains empty even after this

expansion. Since D∆ = 0, then DTD∆ = 0. By subtracting ∆ from both sides, we obtain

−∆ = (DTD− I)∆. (5.17)

Taking an entry-wise absolute value on both sides, we obtain

|∆| = |(DTD− I)∆| ≤ |DTD− I| · |∆|, (5.18)

where we have applied the triangle inequality to the multiplication of the ith row of (DTD− I)

by the vector ∆. Note that in the convolutional case DTD is zero for inner products of atoms

which do not overlap. Furthermore, the ith row of DTD is non-zero only in the indices which

correspond to the stripe that fully contains the ith atom, and these non-zero entries can be

bounded by µ(D). Thus, extracting the ith row from the above equation gives

|∆i| ≤ µ(D)
(
‖δp(i)‖1 − |∆i|

)
,

where p(i) is the stripe centered around the ith atom and δp(i) is the corresponding sparse vector

of length (2n− 1)m extracted from ∆, as can be seen in Figure 5.10. This can be written as

|∆i| ≤
µ(D)

µ(D) + 1
‖δp(i)‖1.

The above expression is a relaxation of the equality in Equation (5.17), since each entry ∆i is

no longer constrained to a specific value, but rather bounded from below and above. Therefore,

by putting the above into Cs, we obtain a larger set C1
s:

Cs ⊆ C1
s =

∆

∣∣∣∣∣∣∣
∆ 6= 0, 0 ≥ ‖∆ + Γ‖1 − ‖Γ‖1

|∆i| ≤
µ(D)

µ(D) + 1
‖δp(i)‖1, ∀i

.
Next, let us examine the second requirement

0 ≥‖∆ + Γ‖1 − ‖Γ‖1
=
∑

i∈T (Γ)

(|∆i + Γi| − |Γi|) +
∑

i/∈T (Γ)

|∆i|, (5.19)

where, as before, T (Γ) denotes the support of Γ. Using the reverse triangle inequality, |a+b|−|b| ≥
−|a|, we obtain

0 ≥
∑

i∈T (Γ)

(|∆i + Γi| − |Γi|) +
∑

i/∈T (Γ)

|∆i| (5.20)

≥
∑

i∈T (Γ)

−|∆i|+
∑

i/∈T (Γ)

|∆i| = ‖∆‖1 − 21TT (Γ)|∆|,
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Figure 5.10: On the left we have the global sparse vector Γ, a stripe γp(i) (centered around the

ith atom) extracted from it, and the center of this stripe γp(i),0. The length of the stripe γp(i) is
(2n− 1)m and the length of γp(i),0 is m. On the right we have the corresponding global vector

∆. Notice that if we were to consider the i+ 1 entry instead of the ith, the vector corresponding
to δp(i) would not change because the atoms i and i+ 1 are fully overlapping.

where the vector 1T (Γ) contains ones in the entries corresponding to the support of Γ and zeros

elsewhere. Note that every vector satisfying Equation (5.19) will necessarily satisfy Equation

(5.20). Therefore, by relaxing this constraint in C1
s, we obtain a larger set C2

s

C1
s ⊆ C2

s =

∆

∣∣∣∣∣∣∣
∆ 6= 0, 0 ≥ ‖∆‖1 − 21TT (Γ)|∆|

|∆i| ≤
µ(D)

µ(D) + 1
‖δp(i)‖1, ∀i

.
Next, we will show the above defined set is empty for a small-enough support. We begin by

summing the inequalities |∆i| ≤ µ(D)
µ(D)+1‖δp(i)‖1 over the support of γp(i),0. Recall that γp(i) is

defined to be a stripe of length (2n− 1)m extracted from the global representation vector and

γp(i),0 corresponds to the central m coefficients in the p(i) stripe. Also, note that δp(i) is equal

for all the entries inside the support of γp(i),0. Since all the atoms inside the support of γp(i),0

are fully overlapping, δp(i) does not change, as explained in Figure 5.10. Thus, we obtain

1TT (γp(i),0)|∆| ≤
µ(D)

µ(D) + 1
· ‖γp(i),0‖0 · ‖δp(i)‖1.
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Summing over all different p(i) we obtain

1TT (Γ)|∆| ≤
µ(D)

µ(D) + 1

∑
k

‖γk,0‖0 · ‖δk‖1. (5.21)

Notice that in the sum above we multiply the `0-norm of the local sparse vector γk,0 by the

`1 norm of the stripe δk. In what follows, we will show that, instead, we could multiply the

`0-norm of the stripe γk by the `1 norm of the local sparse vector δk,0, thus changing the order

between the two. As a result, we will obtain the following inequality:

1TT (Γ)|∆| ≤
µ(D)

µ(D) + 1

∑
k

‖γk‖0 · ‖δk,0‖1.

Returning to Equation (5.21), we begin by decomposing the `1 norm of the stripe δk into all

possible shifts (m−dimensional chunks) and pushing the sum outside, obtaining:

1TT (Γ)|∆| ≤
µ(D)

µ(D) + 1

∑
k

‖γk,0‖0 · ‖δk‖1

=
µ(D)

µ(D) + 1

∑
k

‖γk,0‖0 k+n−1∑
j=k−n+1

‖δj,0‖1


=

µ(D)

µ(D) + 1

∑
k

k+n−1∑
j=k−n+1

‖γk,0‖0‖δj,0‖1. (5.22)

Define a banded matrix A (with a band of width 2n − 1) such that Ak,j = ‖γk,0‖0 · ‖δj,0‖1,

where k − n+ 1 ≤ j ≤ k + n− 1. Notice that the summation in (5.22) is equal to the sum of all

entries in this matrix, where the first sum considers all its rows k while the second sum considers

all its columns j (the second sum is restricted to the non-zero band). Instead, this interpretation

suggests that we could first sum over all the columns j, and only then sum over all the rows k

which are inside the band. As a result, we obtain that

1TT (Γ)|∆| ≤
µ(D)

µ(D) + 1

∑
k

k+n−1∑
j=k−n+1

‖γk,0‖0 · ‖δj,0‖1

=
µ(D)

µ(D) + 1

∑
j

j+n−1∑
k=j−n+1

‖γk,0‖0 · ‖δj,0‖1

=
µ(D)

µ(D) + 1

∑
j

‖δj,0‖1 j+n−1∑
k=j−n+1

‖γk,0‖0

 .

Summing over all possible shifts we obtain the `0-norm of the stripe γj ; i.e.,

1TT (Γ)|∆| ≤
µ(D)

µ(D) + 1

∑
j

‖δj,0‖1 · ‖γj‖0.
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Using the definition of ‖ · ‖0,∞

1TT (Γ)|∆| ≤
µ(D)

µ(D) + 1

∑
j

‖δj,0‖1 · ‖γj‖0

≤ µ(D)

µ(D) + 1

∑
j

‖δj,0‖1 · ‖Γ‖0,∞

≤ µ(D)

µ(D) + 1
· ‖∆‖1 · ‖Γ‖0,∞. (5.23)

For the set C2
s to be non-empty, there must exist a ∆ which satisfies

0 ≥‖∆‖1 − 21TT (Γ)|∆|

≥‖∆‖1 − 2
µ(D)

µ(D) + 1
· ‖∆‖1 · ‖Γ‖0,∞,

where the first and second inequalities are given in (5.20) and (5.23), respectively. Rearranging the

above we obtain ‖Γ‖0,∞ ≥ 1
2

(
1 + 1

µ(D)

)
. However, we have assumed that ‖Γ‖0,∞ < 1

2

(
1 + 1

µ(D)

)
and thus the previous inequality is not satisfied. As a result, the set we have defined is empty,

implying that BP leads to the desired solution.

5.10.3 On the Shifted Mutual Coherence and Stripe Coherence

Definition 10: Define the shifted mutual coherence µs by

µs = max
i,j

|〈d0
i ,d

s
j〉|,

where d0
i is a column extracted from Ω0, dsj is extracted from Ωs, and we require9 that i 6= j if

s = 0.

The shifted mutual coherence exhibits some interesting properties:

1. µs is symmetric with respect to the shift s, i.e. µs = µ−s.

2. Its maximum over all shifts equals the global mutual coherence of the convolutional

dictionary: µ(D) = max
s

µs.

3. The mutual coherence of the local dictionary is bounded by that of the global one:

µ(DL) = µ0 ≤ max
s

µs = µ(D).

We now briefly remind the definition of the maximal stripe coherence, as we will make use of it

throughout the rest of this section. Given a vector Γ, recall that the stripe coherence is defined

as ζ(γi) =
∑n−1

s=−n+1 ni,s µs, where ni,s is the number of non-zeros in the sth shift of γi, taken

from Γ. The reader might ponder how the maximal stripe coherence might be computed. Let us

now define the vector v which contains in its ith entry the number ni,0. Using this definition,

9The condition i 6= j if s = 0 is necessary so as to avoid the inner product of an atom by itself.
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Figure 5.11: Left: the shifted mutual coherence as function of the shift. The larger the shift
between the atoms, the lower µs is expected to be. Right: the maximal stripe coherence as a

function of the `0,∞ norm, for random realizations of global sparse vectors.

the coherence of every stripe can be calculated efficiently by convolving the vector v with the

vector of the shifted mutual coherences [µ−n+1, . . . , µ−1, µ0, µ1, . . . , µn−1].

Next, we provide an experiment in order to illustrate the shifted mutual coherence. To this

end, we generate a random local dictionary with m = 8 atoms of length n = 64 and afterwards

normalize its columns. We then construct a convolutional dictionary which contains global

atoms of length N = 640. We exhibit the shifted mutual coherences for this dictionary in Figure

5.11(a).

Given this dictionary, we generate sparse vectors with random supports of cardinalities in

the range [1, 300]. For each sparse vector we compute its `0,∞ norm by searching for the densest

stripe, and its maximal stripe coherence using the convolution mentioned above. In Figure

5.11(b) we illustrate the connection between the `0,∞ norm and the maximal stripe coherence

for this set of sparse vectors. As expected, the `0,∞ norm and the maximal stripe coherence are

highly correlated. Although the theorems based on the stripe coherence are sharper, they are

harder to comprehend. In this experiment we attempted to alleviate this by showing an intuitive

connection between the two.

We now present a theorem relating the stripe coherences of related sparse vectors.

Theorem 21. Let Γ1 and Γ2 be two global sparse vectors such that the support of Γ1 is contained

in the support of Γ2. Then the maximal stripe coherence of Γ1 is less or equal than that of Γ2.

Proof. Denote by γ1
i and γ2

i the ith stripe extracted from Γ1 and Γ2, respectively. Also, denote

by n1
i,s and n2

i,s the number of non-zeros in the sth shift of γ1
i and γ2

i , respectively. Since the
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support of Γ1 is contained in the support of Γ2, we have that ∀i, s n1
i,s ≤ n2

i,s. As a result, we

have that

max
i

n−1∑
s=−n+1

n1
i,sµs ≤ max

i

n−1∑
s=−n+1

n2
i,sµs.

The left-hand side of the above inequality is the maximal stripe coherence of Γ1, while the

right-hand side is the corresponding one for Γ2, proving the hypothesis.

Theorem 12. (Global OMP recovery guarantee using the stripe coherence): Given the system of

linear equations X = DΓ, if a solution Γ exists satisfying

max
i

ζi = max
i

n−1∑
s=−n+1

ni,sµs <
1

2
(1 + µ0) ,

then OMP is guaranteed to recover it.

Proof. The first steps of this proof are exactly those derived in proving Theorem 8, and are thus

omitted for the sake brevity. Recall that in order for the first step of OMP to succeed, we require∣∣∣∣∣∑
t∈T

Γtd
T
t di

∣∣∣∣∣ > max
j /∈T

∣∣∣∣∣∑
t∈T

Γtd
T
t dj

∣∣∣∣∣ . (5.24)

Lower bounding the left hand side of the above inequality, we can write∣∣∣∣∣∑
t∈T

Γtd
T
t di

∣∣∣∣∣ ≥ |Γi| − |Γi| ∑
t∈Tp(i),t6=i

|dTt di|,

as stated previously in Equation (5.15). Instead of summing over the support Tp(i), we can sum

over all the supports Tp(i),s, which correspond to all possible shifts. We can then write∣∣∣∣∣∑
t∈T

Γtd
T
t di

∣∣∣∣∣ ≥ |Γi| − |Γi|
n−1∑

s=−n+1

∑
t∈Tp(i),s
t6=i

|dTt di|.

We can bound the right term by using the number of non-zeros in each sub-support Tp(i),s,
denoted by np(i),s, together with the corresponding shifted mutual coherence µs. Also, we

can disregard the constraint t 6= i in the above summation by subtracting an extra µ0 term,

obtaining: ∣∣∣∣∣∑
t∈T

Γtd
T
t di

∣∣∣∣∣ ≥ |Γi| − |Γi|
(

n−1∑
s=−n+1

µsnp(i),s − µ0

)
.

Bounding the above by the maximal stripe coherence, we obtain∣∣∣∣∣∑
t∈T

Γtd
T
t di

∣∣∣∣∣ ≥ |Γi| − |Γi|
(

max
k

n−1∑
s=−n+1

µsnk,s − µ0

)
.
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In order to upper bound the right hand side of Equation (5.24) we follow the steps leading to

Equation (5.16), resulting in

max
j /∈T

∣∣∣∣∣∑
t∈T

Γtd
T
t dj

∣∣∣∣∣ ≤ |Γi|max
j /∈T

∑
t∈Tp(j)

|dTt dj |.

Using a similar decomposition of the support and the definition of the shifted mutual coherence,

we have

max
j /∈T

∣∣∣∣∣∑
t∈T

Γtd
T
t dj

∣∣∣∣∣ ≤ |Γi|max
j /∈T

n−1∑
s=−n+1

∑
t∈Tp(j),s

|dTt dj |

≤ |Γi|max
j /∈T

n−1∑
s=−n+1

µsnp(j),s.

Once again bounding this expression by the maximal stripe coherence, we obtain

max
j /∈T

∣∣∣∣∣∑
t∈T

Γtd
T
t dj

∣∣∣∣∣ ≤ |Γi| ·max
k

n−1∑
s=−n+1

µsnk,s.

Using both bounds, we have that∣∣∣∣∣∑
t∈T

Γtd
T
t di

∣∣∣∣∣ ≥ |Γi| − |Γi|
(

max
k

n−1∑
s=−n+1

µsnk,s − µ0

)

> |Γi| ·max
k

n−1∑
s=−n+1

µsnk,s

≥ max
j /∈T

∣∣∣∣∣∑
t∈T

Γtd
T
t dj

∣∣∣∣∣ .
Thus,

1−max
k

n−1∑
s=−n+1

µsnk,s + µ0 > max
k

n−1∑
s=−n+1

µsnk,s.

Finally, we obtain

max
k

ζk = max
k

n−1∑
s=−n+1

µsnk,s <
1

2
(1 + µ0) ,

which is the requirement stated in the theorem. Thus, this condition guarantees the success of

the first OMP step, implying it will choose an atom inside the true support T .

The next step in the OMP algorithm is an update of the residual. This is done by decreasing

a term proportional to the chosen atom (or atoms within the correct support in subsequent

iterations) from the signal. Thus, the support of this residual is contained within the support of

the true signal. As a result, according to the previous theorem, the maximal stripe coherence

corresponding to the residual is less or equal to the one of the true sparse code Γ. Using the
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same set of steps we obtain that the condition on the maximal stripe coherence guarantees that

the algorithm chooses again an atom from the true support of the solution. Furthermore, the

orthogonality enforced by the least-squares step guarantees that the same atom is never chosen

twice. As a result, after ‖Γ‖0 iterations the OMP will find all the atoms in the correct support,

reaching a residual equal to zero.

Theorem 13. (Global BP recovery guarantee using the stripe coherence): Given the system of

linear equations X = DΓ, if a solution Γ exists satisfying

max
i

ζi = max
i

n−1∑
s=−n+1

ni,sµs <
1

2
(1 + µ0) ,

then Basis Pursuit is guaranteed to recover it.

The proof of this claim is similar to that of Theorem 9, while using ideas from Theorem 12.

In particular, one should repeat the steps leading to Equation (5.18). Then, using the definition

of the shifted mutual coherence, one can have

|∆i| ≤
n−1∑

s=−n+1

µs‖δp(i),s‖1 − µ0|∆i|.

Summing over the support of γp(i),0

1TT (γp(i),0)|∆| ≤
n−1∑

s=−n+1

µs
µ0 + 1

‖δp(i),s‖1 ‖γp(i),0‖0.

Summing over all different p(i) we obtain

1TT (Γ)|∆| ≤
∑
k

n−1∑
s=−n+1

µs
µ0 + 1

‖δk,s‖1 ‖γk,0‖0.

Changing the order of summation, just as done in proving Theorem 9, we get

1TT (Γ)|∆| ≤
∑
k

n−1∑
s=−n+1

µs
µ0 + 1

‖δk,0‖1 ‖γk,s‖0.

Rearranging the above,

‖∆‖1 ≤
∑
k

‖δk,0‖1
µ0 + 1

n−1∑
s=−n+1

µs‖γk,s‖0,

or equally,

‖∆‖1 ≤
‖∆‖1
µ0 + 1

n−1∑
s=−n+1

µs‖γk,s‖0.
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Using the definition of the stripe coherence and recalling that ni,s = ‖γk,s‖0, one gets

‖∆‖1 ≤
‖∆‖1
µ0 + 1

max
i

n−1∑
s=−n+1

ni,sµs.

From the above equation, the rest of the proof follows naturally.

We have provided two theorems for the success of the OMP algorithm. Before concluding,

we aim to show that assuming µ(D) = µ0, the guarantee based on the stripe coherence is at

least as strong as the one based on the `0,∞ norm. Assume the recovery condition using the

`0,∞ norm is met and as such ‖Γ‖0,∞ = maxi ni <
1
2

(
1 + 1

µ(D)

)
, where ni is equal to ‖γi‖0.

Multiplying both sides by µ(D) we obtain maxi ni · µ(D) < 1
2 (1 + µ(D)). Using the above

inequality and the properties:

1)
n−1∑

s=−n+1

ni,s = ni, 2) ∀s µs ≤ µ(D),

we have that

max
i

n−1∑
s=−n+1

ni,sµs ≤ max
i

n−1∑
s=−n+1

ni,sµ(D)

= max
i

ni · µ(D) <
1

2
(1 + µ(D)) .

Thus, we obtain that

max
i

n−1∑
s=−n+1

ni,sµs <
1

2
(1 + µ(D)) =

1

2
(1 + µ0) ,

where we have used our assumption that µ(D) = µ0. We conclude that if the recovery condition

based on the `0,∞ norm is met, then so is the one based on the stripe coherence. As a result, the

condition based on the stripe coherence is at least as strong as the one based on the `0,∞ norm.

As a final note, we mention that assuming µ(D) = max
s

µs = µ0 is in fact a reasonable

assumption. Recall that in order to compute µs we evaluate inner products between atoms which

are s indexes shifted from each other. As a result, the higher the shift s is, the less overlap the

atoms have, and the less µs is expected to be. Thus, we expect the value µ0 to be the largest or

close to it in most cases.

5.10.4 Theoretical Analysis of Corrupted Signals

Theorem 15. (Upper bounding the SRIP via the mutual coherence): For a convolutional dictio-

nary D with global mutual coherence µ(D), the SRIP can be upper-bounded by

δk ≤ (k − 1)µ(D).
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Proof. Consider the sub-dictionary DT , obtained by restricting the columns of D to a support

T with `0,∞ norm equal to k. Lemma 1 states that the eigenvalues of the Gram matrix DT
TDT

are bounded by

1− (k − 1)µ(D) ≤ λi(DT
TDT ) ≤ 1 + (k − 1)µ(D).

Now, for every ∆ we have that

(1− (k − 1)µ(D))‖∆‖22 ≤λmin(DT
TDT )‖∆‖22

≤‖DT∆‖22 ≤ λmax(DT
TDT )‖∆‖22

≤(1 + (k − 1)µ(D))‖∆‖22,

where λmax and λmin are the maximal and minimal eigenvalues, respectively. As a result, we

obtain that δk ≤ (k − 1)µ(D).

Theorem 16. (Stability of the solution to the P ε0,∞ problem): Consider a sparse vector Γ such

that ‖Γ‖0,∞ = k < 1
2

(
1 + 1

µ(D)

)
, and a convolutional dictionary D satisfying the SRIP property

for `0,∞ = 2k with coefficient δ2k. Then, the distance between the true sparse vector Γ and the

solution to the P ε0,∞ problem Γ̂ is bounded by

‖Γ− Γ̂‖22 ≤
4ε2

1− δ2k
≤ 4ε2

1− (2k − 1)µ(D)
. (5.25)

Proof. The solution to the P ε0,∞ problem satisfies ‖Y −DΓ̂‖22 ≤ ε2, and it must also satisfy

‖Γ̂‖0,∞ ≤ ‖Γ‖0,∞ (since Γ̂ is the solution with the minimal `0,∞ norm). Defining ∆ = Γ− Γ̂,

using the triangle inequality, we have that ‖D∆‖22 = ‖DΓ−Y + Y−DΓ̂‖22 ≤ 4ε2. Furthermore,

since the `0,∞ norm satisfies the triangle inequality as well, we have that ‖∆‖0,∞ = ‖Γ−Γ̂‖0,∞ ≤
‖Γ‖0,∞ + ‖Γ̂‖0,∞ ≤ 2k. Using the SRIP of D, we have that

(1− δ2k)‖∆‖22 ≤ ‖D∆‖22 ≤ 4ε2,

where in the first inequality we have used the lower bound provided by the definition of the

SRIP. Finally, we obtain the following stability claim:

‖∆‖22 = ‖Γ− Γ̂‖22 ≤
4ε2

1− δ2k
.

Using our bound of the SRIP in terms of the mutual coherence, we obtain that

‖∆‖22 = ‖Γ− Γ̂‖22 ≤
4ε2

1− δ2k
≤ 4ε2

1− (2k − 1)µ(D)
.

For the last inequality to hold, we have assumed k = ‖Γ‖0,∞ < 1
2(1 + 1

µ(D)).
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Theorem 17. (Stable recovery of global OMP in the presence of noise): Suppose a clean signal

X has a representation DΓ, and that it is contaminated with noise E to create the signal

Y = X + E, such that ‖Y−X‖2 ≤ ε. Denote by εL the highest energy of all n-dimensional local

patches extracted from E. Assume Γ satisfies

‖Γ‖0,∞ <
1

2

(
1 +

1

µ(D)

)
− 1

µ(D)
· εL
|Γmin|

, (5.26)

where |Γmin| is the minimal entry in absolute value of the sparse vector Γ. Denoting by ΓOMP

the solution obtained by running OMP for ‖Γ‖0 iterations, we are guaranteed that

[ a) ]

1. OMP will find the correct support; And,

2. ‖ΓOMP − Γ‖22 ≤ ε2

1−µ(‖Γ‖0,∞−1) .

Proof. We shall first prove that the first step of OMP succeeds in recovering an element from

the correct support. Denoting by T the support of Γ, we can write

Y = DΓ + E =
∑
t∈T

Γtdt + E. (5.27)

Suppose that Γ has its largest coefficient in absolute value in Γi. For the first step of OMP to

choose one of the atoms in the support, we require

|dTi Y| > max
j /∈T
|dTj Y|.

Substituting Equation (5.27) in this requirement we obtain∣∣∣∣∣∑
t∈T

Γtd
T
t di + ETdi

∣∣∣∣∣ > max
j /∈T

∣∣∣∣∣∑
t∈T

Γtd
T
t dj + ETdj

∣∣∣∣∣ . (5.28)

Using the reverse triangle inequality we can construct a lower bound for the left hand side:∣∣∣∣∣∑
t∈T

Γtd
T
t di + ETdi

∣∣∣∣∣ ≥
∣∣∣∣∣∑
t∈T

Γtd
T
t di

∣∣∣∣∣− ∣∣ETdi
∣∣ .

Our next step is to bound the absolute value of the inner product of the noise and the atom di.

A näıve approach, based on the Cauchy-Schwarz inequality and the normalization of the atoms,

would be to bound the inner product as |ETdi| ≤ ‖E‖2 · ‖di‖2 ≤ ε. However, such bound would

disregard the local nature of the atoms. Due to their limited support we have that di = RT
i Ridi

where, as previously defined, Ri extracts a n-dimensional patch from a N -dimensional signal.

Based on this observation, we have that

|ETdi| = |ETRT
i Ridi| ≤ ‖RiE‖2 · ‖di‖2 ≤ εL ,
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where we have used the fact that ‖RiE‖2 ≤ εL ∀ i. By exploiting the locality of the atom,

together with the assumption regarding the maximal local energy of the noise, we are able to

obtain a much tighter bound, because εL � ε in general. As a result, we obtain∣∣∣∣∣∑
t∈T

Γtd
T
t di + ETdi

∣∣∣∣∣ ≥
∣∣∣∣∣∑
t∈T

Γtd
T
t di

∣∣∣∣∣− εL .
Using the reverse triangle inequality, the normalization of the atoms and the fact that |Γi| ≥ |Γt|,
we obtain ∣∣∣∣∣∑

t∈T
Γtd

T
t di + ETdi

∣∣∣∣∣ ≥ |Γi| − ∑
t∈T ,t6=i

|Γt| · |dTt di| − εL

≥ |Γi| − |Γi|
∑

t∈T ,t6=i
|dTt di| − εL .

Notice that dTt di is zero for every atom too far from di because the atoms do not overlap.

Denoting the stripe which fully contains the ith atom as p(i) and its support as Tp(i), we can

restrict the summation as:∣∣∣∣∣∑
t∈T

Γtd
T
t di + ETdi

∣∣∣∣∣ ≥ |Γi| − |Γi| ∑
t∈Tp(i),
t6=i

|dTt di| − εL .

Denoting by np(i) the number of non-zeros in the support Tp(i) and using the definition of the

mutual coherence we obtain:∣∣∣∣∣∑
t∈T

Γtd
T
t di + ETdi

∣∣∣∣∣ ≥ |Γi| − |Γi|(np(i) − 1)µ(D)− εL

≥ |Γi| − |Γi|(‖Γ‖0,∞ − 1)µ(D)− εL .

In the last inequality we have used the definition of the `0,∞ norm.

Now, we construct an upper bound for the right hand side of equation (5.28), once again

using the triangle inequality and the fact that |ETdj | ≤ εL :

max
j /∈T

∣∣∣∣∣∑
t∈T

Γtd
T
t dj + ETdj

∣∣∣∣∣ ≤ max
j /∈T

∣∣∣∣∣∑
t∈T

Γtd
T
t dj

∣∣∣∣∣+ εL .
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Using the same rationale as before we get

max
j /∈T

∣∣∣∣∣∑
t∈T

Γtd
T
t dj + ETdj

∣∣∣∣∣ ≤ |Γi|max
j /∈T

∑
t∈T
|dTt dj |+ εL

≤ |Γi|max
j /∈T

∑
t∈Tp(j)

|dTt dj |+ εL

≤ |Γi| · ‖Γ‖0,∞ · µ(D) + εL .

Using both bounds, we obtain∣∣∣∣∣∑
t∈T

Γtd
T
t di + ETdi

∣∣∣∣∣ ≥ |Γi| − |Γi|(‖Γ‖0,∞ − 1)µ(D)− εL

≥|Γi| · ‖Γ‖0,∞µ(D) + εL ≥ max
j /∈T

∣∣∣∣∣∑
t∈T

Γtd
T
t dj + ETdj

∣∣∣∣∣ .
From this, it follows that

‖Γ‖0,∞ ≤
1

2

(
1 +

1

µ(D)

)
− 1

µ(D)
· εL
|Γi|

. (5.29)

Note that the theorem’s hypothesis assumes that the above holds for |Γmin| instead of |Γi|.
However, because |Γi| ≥ |Γmin|, this condition holds for every i. Therefore, Equation (5.29)

holds and we conclude that the first step of OMP succeeds.

Next, we address the success of subsequent iterations of the OMP. Define the sparse vector

obtained after k < ‖Γ‖0 iterations as Λk, and denote its support by T k. Assuming that the

algorithm identified correct atoms (i.e., has so far succeeded), T k = supp{Λk} ⊂ supp{Γ}. The

next step in the algorithm is the update of the residual. This is done by decreasing a term

proportional to the chosen atoms from the signal; i.e.,

Yk = Y −
∑
i∈T k

diΛ
k
i .

Moreover, Yk can be seen as containing a clean signal Xk and the noise component E, where

Xk = X−
∑
i∈T k

diΛ
k
i = DΓk.

The objective is then to recover the support of the sparse vector corresponding to Xk, Γk, defined

as10

Γki =

{
Γi − Λki if i ∈ T k

Γi if i /∈ T k.
(5.30)

10Note that if k = 0, X0 = X, Y0 = Y, and Γ0 = Γ.
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Note that supp{Γk} ⊆ supp{Γ} and so

‖Γk‖0,∞ ≤ ‖Γ‖0,∞. (5.31)

In words, the `0,∞ norm of the underlying solution of Xk does not increase as the iterations

proceed. Note that this representation is also unique in light of the uniqueness theorem presented

in part I. From the above definitions, we have that

Yk −Xk = Y −
∑
i∈T k

diΛ
k
i −X +

∑
i∈T k

diΛ
k
i

= Y −X = E.

Hence, the noise level is preserved, both locally and globally; both ε and εL remain the same.

Note that Γk differs from Γ in at most k places, following Equation (5.30) and that |T k| = k.

As such, ‖Γk‖∞ is greater or equal than the (k + 1)th largest element in absolute value in Γ.

This implies that ‖Γk‖∞ ≥ |Γmin|. Finally, we obtain that

‖Γk‖0,∞ ≤ ‖Γ‖0,∞ <
1

2

(
1 +

1

µ(D)

)
− 1

µ(D)
· εL
|Γmin|

≤ 1

2

(
1 +

1

µ(D)

)
− 1

µ(D)
· εL
‖Γk‖∞

.

The first inequality is due to (5.31), the second is the assumption in (6.10) and the third was

just obtained above. Thus,

‖Γk‖0,∞ <
1

2

(
1 +

1

µ(D)

)
− 1

µ(D)
· εL
‖Γk‖∞

.

Similar to the first iteration, the above inequality together with the fact that the noise level is

preserved, guarantees the success of the next iteration of the OMP algorithm. From this follows

that the algorithm is guaranteed to recover the true support after ‖Γ‖0 iterations.

Finally, we move to prove the second claim. In its last iteration OMP solves the following

problem:

ΓOMP = arg min
∆
‖DT∆−Y‖22,

where DT is the convolutional dictionary restricted to the support T of the true sparse code

Γ. Denoting ΓT the (dense) vector corresponding to those atoms, the solution to the above

problem is simply given by

ΓOMP = D†TY = D†T (DΓ + E)

= D†T (DT ΓT + E) = ΓT + D†T E,
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where we have denoted by D†T the Moore-Penrose pseudoinverse of the sub-dictionary DT . Thus,

‖ΓOMP − ΓT ‖22 = ‖D†T E‖22 ≤ ‖D
†
T ‖

2
2 · ‖E‖22

=
1

λmin

(
DT
TDT

)‖E‖22 ≤ ε2

1− µ(D)(‖Γ‖0,∞ − 1)
.

In the last inequality we have used the bound on the eigenvalues of DT
TDT derived in Lemma 1.

Theorem 18. (ERC in the convolutional sparse model): For a convolutional dictionary D with

mutual coherence µ(D), the ERC condition is met for every support T that satisfies

‖T ‖0,∞ <
1

2

(
1 +

1

µ(D)

)
.

Proof. For the ERC to be satisfied, we must require that, for every i /∈ T ,

‖D†T di‖1 =
∥∥∥(DT

TDT
)−1

DT
T di

∥∥∥
1
< 1.

Using properties of induced norms, we have that∥∥∥(DT
TDT

)−1
DT
T di

∥∥∥
1
≤
∥∥∥(DT

TDT
)−1
∥∥∥

1

∥∥DT
T di

∥∥
1
. (5.32)

Using the definition of the mutual coherence, it is easy to see that the absolute value of the

entries in the vector DT
T di are bounded by µ(D). Moreover, due to the locality of the atoms,

the number of non-zero inner products with the atom di is equal to the number of atoms in T
that overlap with it. This number can, in turn, be bounded by the maximal number of non-zeros

in a stripe from T , i.e., its `0,∞ norm, denoted by k. Therefore,
∥∥DT
T di

∥∥
1
≤ kµ(D).

Addressing now the first term in Equation (5.32), note that∥∥∥(DT
TDT

)−1
∥∥∥

1
=
∥∥∥(DT

TDT
)−1
∥∥∥
∞
, (5.33)

since the induced `1 and `∞ norms are equal for symmetric matrices. Next, using the Ahlberg-

Nilson-Varah bound and similar steps to those presented in Lemma 1, we have that∥∥∥(DT
TDT

)−1
∥∥∥
∞
≤ 1

1− (k − 1)µ(D)
. (5.34)

In order for this to hold, we must require the Gram DT
TDT to be diagonally dominant, which is

satisfied if 1− (k − 1)µ(D) > 0. This is indeed the case, as follows from the assumption on the

`0,∞ norm of T . Plugging the above into Equation (5.32), we obtain∥∥∥(DT
TDT

)−1
DT
T di

∥∥∥
1
≤
∥∥∥(DT

TDT
)−1
∥∥∥

1

∥∥DT
T di

∥∥
1

(5.35)

≤ kµ(D)

1− (k − 1)µ(D)
.
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Our assumption that k < 1
2

(
1 + 1

µ(D)

)
implies that the above term is less than one, thus showing

the ERC is satisfied for all supports T that satisfy ‖T ‖0,∞ < 1
2

(
1 + 1

µ(D)

)
.

Theorem 19. (Stable recovery of global Basis Pursuit in the presence of noise): Suppose a clean

signal X has a representation DΓ, and that it is contaminated with noise E to create the signal

Y = X + E. Denote by εL the highest energy of all n-dimensional local patches extracted from

E. Assume Γ satisfies

‖Γ‖0,∞ ≤
1

3

(
1 +

1

µ(D)

)
. (5.36)

Denoting by ΓBP the solution to the Lagrangian BP formulation with parameter λ = 4εL, we

are guaranteed that

1. The support of ΓBP is contained in that of Γ.

2. ‖ΓBP − Γ‖∞ < 15
2 εL.

3. In particular, the support of ΓBP contains every index i for which |Γi| > 15
2 εL.

4. The minimizer of the problem, ΓBP, is unique.

We first state and prove a Lemma that will become of use while proving the stability result

of BP.

Lemma 5.10.1. Suppose a clean signal X has a representation DΓ, and that it is contaminated

with noise E to create the signal Y = X+E. Denote by εL the highest energy of all n-dimensional

local patches extracted from E. Assume that

‖Γ‖0,∞ ≤
1

2

(
1 +

1

µ(D)

)
. (5.37)

Denoting by XLS the best `2 approximation of Y over the support T , we have that11

‖DT (Y −XLS)‖∞ ≤ 2εL.

Proof. Using the expression for the least squares solution (and assuming that DT has full-column

rank), we have that

DT
T (Y −XLS) = DT

T

(
Y −DT

(
DT
TDT

)−1
DT
TY
)

=
(
DT
T −DT

TDT
(
DT
TDT

)−1
DT
T

)
Y = 0.

This shows that all inner products between atoms inside T and the vector Y −XLS are zero,

and thus ‖DT
T (Y −XLS)‖∞ = ‖DT (Y −XLS)‖∞. We have denoted by T the complement to

11We suspect that, perhaps under further assumptions, the constant in this bound can be improved from 2 to 1.
This is motivated by the fact that the bound in [Tro06], for the traditional sparse model, is 1 · ε – where ε is the
global noise level.
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the support, containing all atoms not found in T , and by DT the corresponding dictionary.

Denoting by ΓT the vector Γ restricted to its support, and expressing XLS and Y conveniently,

we obtain

‖DT
T (Y −XLS)‖∞

=‖DT
T

(
I−DT

(
DT
TDT

)−1
DT
T

)
Y‖∞

=‖DT
T

(
I−DT

(
DT
TDT

)−1
DT
T

)
(DT ΓT + E)‖∞.

It is easy to verify that (
I−DT

(
DT
TDT

)−1
DT
T

)
DT ΓT = 0.

Plugging this into the above, we have that

‖DT
T (Y −XLS)‖∞ =

∥∥∥DT
T

(
I−DT

(
DT
TDT

)−1
DT
T

)
E
∥∥∥
∞
.

Using the triangle inequality for the `∞ norm, we obtain

‖DT
T (Y −XLS)‖∞

=
∥∥∥DT
T E−DT

TDT
(
DT
TDT

)−1
DT
T E
∥∥∥
∞

≤
∥∥DT
T E
∥∥
∞ +

∥∥∥DT
TDT

(
DT
TDT

)−1
DT
T E
∥∥∥
∞
. (5.38)

In what follows, we will bound both terms in the above expression with εL. First, due to the

limited support of the atoms, di = RT
i Ridi, where Ri extracts the ith local patch from the

global signal, as previously defined. Thus,

∥∥DT
T E
∥∥
∞ = max

i∈T
|dTi E| = max

i∈T
|dTi RT

i RiE| (5.39)

≤ max
i∈T
‖Ridi‖2 · ‖RiE‖2 ≤ εL,

where we have used the Cauchy-Schwarz inequality, the normalization of the atoms and the

fact that ‖RiE‖2 ≤ εL ∀ i. Next, we move to the second term in Equation (5.38). Using the

definition of the induced `∞ norm, and the bound ‖DT
T E‖∞ ≤ εL, we have that∥∥∥DT

TDT
(
DT
TDT

)−1
DT
T E
∥∥∥
∞
≤
∥∥∥DT
TDT

(
DT
TDT

)−1
∥∥∥
∞
εL.

Recall that the induced infinity norm of a matrix is equal to the maximal `1 norm of its rows.

Notice that a row in the above matrix can be written as dTi DT
(
DT
TDT

)−1
, where i ∈ T . Then,∥∥∥DT

TDT
(
DT
TDT

)−1
DT
T E
∥∥∥
∞

≤max
i∈T

∥∥∥dTi DT
(
DT
TDT

)−1
∥∥∥

1
· εL.
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Using the definition of induced `1 norm and Equation (5.33) and (5.34), we obtain that∥∥∥DT
TDT

(
DT
TDT

)−1
DT
T E
∥∥∥
∞

≤max
i∈T

∥∥dTi DT
∥∥

1
·
∥∥∥(DT

TDT
)−1
∥∥∥

1
· εL

≤max
i∈T

∥∥dTi DT
∥∥

1
· 1

1− (k − 1)µ(D)
· εL,

where we have denoted by k the `0,∞ norm of T . Notice that due to the limited support of the

atoms, the vector dTi DT has at most k non-zeros entries. Additionally, each of these is bounded

in absolute value by the mutual coherence of the dictionary. Therefore, ‖dTi DT ‖1 ≤ kµ(D)

(note that i /∈ T ). Plugging this into the above equation, we obtain∥∥∥DT
TDT

(
DT
TDT

)−1
DT
T E
∥∥∥
∞
≤ kµ(D)

1− (k − 1)µ(D)
· εL.

Rearranging our assumption in Equation (5.37), we get kµ(D)
1−(k−1)µ(D) ≤ 1. Therefore, the above

becomes ∥∥∥DT
TDT

(
DT
TDT

)−1
DT
T E
∥∥∥
∞
≤ εL. (5.40)

Finally, plugging Equation (5.39) and (5.40) into Equation (5.38), we conclude that

‖DT
T (Y −XLS)‖∞

≤
∥∥DT
T E
∥∥
∞ +

∥∥∥DT
TDT

(
DT
TDT

)−1
DT
T E
∥∥∥
∞

≤ εL + εL = 2εL.

For completeness, and before moving to the proof of the stability of BP, we now reproduce

Theorem 8 from [Tro06].

Theorem 22. (Tropp): Suppose a clean signal X has a representation DΓ, and that it is

contaminated with noise E to create the signal Y = X + E. Assume further that Y is a signal

whose best `2 approximation over the support of Γ, denoted by T , is given by XLS, and that

XLS = DΓLS. Moreover, consider ΓBP to be the solution to the Lagrangian BP formulation

with parameter λ. If the following conditions are satisfied:

1. The ERC is met with constant θ ≥ 0 for the support T ; And

2. ‖DT (Y −XLS)‖∞ ≤ λθ,

then the following hold:

1. The support of ΓBP is contained in that of Γ.
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2. ‖ΓBP − ΓLS‖∞ ≤ λ
∥∥∥(DT

TDT
)−1
∥∥∥
∞

.

3. In particular, the support of ΓBP contains every index i for which |ΓLS i| > λ
∥∥∥(DT

TDT
)−1
∥∥∥
∞

.

4. The minimizer of the problem, ΓBP, is unique.

Armed with these, we now proceed to proving Theorem 19.

Proof. In this proof we shall show that Theorem 22 can be reformulated in terms of the `0,∞

norm and the mutual coherence of D, thus adapting it to the convolutional setting. Our strategy

will be first to restrict its conditions (1) and (2), and then to derive from its theses the desired

claims.

To this end, we begin by converting the assumption on the ERC into another one relying

on the `0,∞ norm. This can be readily done using Theorem 18, which states that the ERC

is met assuming the `0,∞ norm of the support is less than 1
2

(
1 + 1

µ(D)

)
– a condition that is

indeed satisfied due to our assumption in Equation (5.36). Next, we move to assumption (2) in

Theorem 22. We can lower bound the ERC constant θ by employing the inequality in (5.35),

thus obtaining

θ = 1−max
i/∈T
‖D†T di‖1 ≥ 1− ‖Γ‖0,∞µ(D)

1− (‖Γ‖0,∞ − 1)µ(D)
.

Using the assumption that ‖Γ‖0,∞ ≤ 1
3

(
1 + 1

µ(D)

)
, as stated in Equation (5.36), the above can

be simplified into

θ = 1−max
i/∈T
‖D†T di‖1 ≥

1

2
. (5.41)

Bringing now the fact that λ = 4εL, as assumed in our Theorem, and using the just obtained

inequality (5.41), condition (2) must hold since

‖DT (Y −XLS)‖∞ ≤ 2εL ≤ θλ.

Note that the leftmost inequality is Lemma (5.10.1), and the implication here is that λ ≥ 4εL.

Thus far, we have addressed the conditions in Theorem 22, showing that they hold in our

convolutional setting. In the remainder of this proof we shall expand on its results, in particular

point 2 and 3. We can upper bound the term
∥∥∥(DT

TDT
)−1
∥∥∥
∞

using Equation (5.34), obtaining

∥∥∥(DT
TDT

)−1
∥∥∥
∞
≤ 1

1− (‖Γ‖0,∞ − 1)µ(D)
. (5.42)

Using once again the assumption that ‖Γ‖0,∞ ≤ 1
3

(
1 + 1

µ(D)

)
, we have that ‖Γ‖0,∞ <

1
3

(
3 + 1

µ(D)

)
. From this last inequality, we get (‖Γ‖0,∞ − 1)µ(D) < 1

3 . Thus, it follows

that
1

1− (‖Γ‖0,∞ − 1)µ(D)
<

3

2
.
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Based on the above inequality, and Equation (5.42), we get∥∥∥(DT
TDT

)−1
∥∥∥
∞
<

3

2
. (5.43)

Plugging this into the second result in Tropp’s theorem, together with the above fixed λ, we

obtain that

‖ΓBP − ΓLS‖∞ ≤ λ
∥∥∥(DT

TDT
)−1
∥∥∥
∞
< 4εL ·

3

2
= 6εL. (5.44)

On the other hand, looking at the distance to the real Γ,

‖ΓLS − Γ‖∞ = ‖
(
DT
TDT

)−1
DT
T (Y −X) ‖∞ (5.45)

≤ ‖
(
DT
TDT

)−1 ‖∞ · ‖DT
T E‖∞ <

3

2
εL.

For the first inequality we have used the definition of the induced `∞ norm, and the second one

follows from (5.43) and a similar derivation to that in (5.39). Finally, using triangle inequality

and Equations (5.45) and (5.44) we obtain

‖ΓBP − Γ‖∞ ≤ ‖ΓBP − ΓLS‖∞ + ‖ΓLS − Γ‖∞ <
15

2
εL.

The third result in the theorem follows immediately from the above.

5.10.5 Global Pursuit Through Local Processing

Let us consider the Iterative Soft Thresholding algorithm which minimizes the global BP problem

by iterating the following updates

Γk = Sλ/c
(

Γk−1 +
1

c
DT (Y −DΓk−1)

)
,

where S applies an entry-wise soft thresholding operation with threshold λ/c. Defining as Pi the

operator which extracts the ith m−dimensional vector from Γ, we can break the above algorithm

into local updates by

PiΓ
k = Sλ/c

(
PiΓ

k−1 +
1

c
PiD

T (Y −DΓk−1)

)
.

As a first observation, the matrix PiD
T , which is of size m×N , is in-fact DT

L padded with zeros.

As a consequence, the above can be rewritten as follows:

PiΓ
k = Sλ/c

(
PiΓ

k−1 +
1

c
PiD

TRT
i Ri(Y −DΓk−1)

)
,

where we have used Ri as the operator which extracts the ith n−dimensional patch from an

N−dimensional global signal. The operator Pi extracts m rows from DT , while RT
i extracts its
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non-zero columns. Therefore, PiD
TRT

i = DT
L, and so we can write

PiΓ
k = Sλ/c

(
PiΓ

k−1 +
1

c
DT
LRi(Y −DΓk−1)

)
.

Noting that αk
i = PiΓ

k is the ith local sparse code, and defining rki = Ri(Y −DΓk−1) as the

corresponding patch-residual at iteration k, we obtain our final update (for every patch)

αk
i = Sλ/c

(
αk−1
i +

1

c
DT
L rk−1

i

)
.

We summarize the above derivations in the main corpus of the chapter.
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Chapter 6

Multi-Layer Convolutional Sparse

Modeling

Chapter Summary

The recently proposed Multi-Layer Convolutional Sparse Coding (ML-CSC) model, consisting of

a cascade of convolutional sparse layers, provides a new interpretation of Convolutional Neural

Networks (CNNs). Under this framework, the computation of the forward pass in a CNN is

equivalent to a pursuit algorithm aiming to estimate the nested sparse representation vectors

– or feature maps – from a given input signal. Despite having served as a pivotal connection

between CNNs and sparse modeling, a deeper understanding of the ML-CSC is still lacking:

there are no pursuit algorithms that can serve this model exactly, nor are there conditions to

guarantee a non-empty model. While one can easily obtain signals that approximately satisfy

the ML-CSC constraints, it remains unclear how to simply sample from the model and, more

importantly, how one can train the convolutional filters from real data.

In this chapter, we propose a sound pursuit algorithm for the ML-CSC model by adopting a

projection approach. We provide new and improved bounds on the stability of the solution of

such pursuit and we analyze different practical alternatives to implement this in practice. We

show that the training of the filters is essential to allow for non-trivial signals in the model, and

we derive an online algorithm to learn the dictionaries from real data, effectively resulting in

cascaded sparse convolutional layers. Last, but not least, we demonstrate the applicability of

the ML-CSC model for several applications in an unsupervised setting, providing competitive

results. The work condensed in this chapter represents a bridge between matrix factorization,

sparse dictionary learning and sparse auto-encoders, and we analyze these connections in detail.
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6.1 Convolutional Sparse Coding and Deep Learning

As we have reviewed in Chapter 2, sparse representation modeling brought about the idea that

natural signals can be (well) described as a linear combination of only a few building blocks or

components, known as atoms [BDE09]. The popularity of this model has grown dramatically,

partially because of the (often state-of-the-art) algorithms that have emerged from it are backed

by elegant theoretical results and sound understanding.

Neural networks, on the other hand, were introduced around forty years ago and were

shown to provide powerful classification algorithms through a series of function compositions

[LBD+90, RHW+88]. It was not until the last half-decade, however, that through a series of

incremental modifications these methods were boosted to become the state-of-the-art machine

learning tools for a wide range of problems, and across many different fields [LBH15]. For the

most part, the development of new variants of deep convolutional neural networks (CNNs) has

been driven by trial-and-error strategies and a considerable amount of intuition.

Withal, a few research groups have begun providing theoretical justifications and analysis

strategies for CNNs from very different perspectives. For instance, by employing wavelet filters

instead of adaptive ones, the work by Bruna and Mallat [BM13] demonstrated how scattering

networks represent shift invariant analysis operators that are robust to deformations (in a

Lipschitz-continuous sense). The work in [GSB15] showed that deep neural networks preserve

the metric structure of the data, under Gaussian weights assumption. In [CSS16], the authors

proposed a hierarchical tensor factorization analysis model to analyze deep CNNs. Fascinating

connections between sparse modeling and CNN have also been proposed. In [GL10], a neural

network architecture was shown to be able to learn iterative shrinkage operators, essentially

unrolling the iterations of a sparse pursuit. Building on this interpretation, the work in [XWG+16]

further showed that CNNs can in fact improve the performance of sparse recovery algorithms.

A precise connection between sparse modeling and CNNs was recently presented in [PRE16],

and its contribution is centered in defining the Multi-Layer Convolutional Sparse Coding (ML-

CSC) model. When deploying this model to real signals, compromises were made in way that

each layer is only approximately explained by the following one. With this relaxation in the

pursuit of the convolutional representations, the main observation of this work is that the

inference stage of CNNs – nothing but the forward-pass – can be interpreted as a very crude

pursuit algorithm seeking for unique sparse representations. This is a useful perspective as it

provides a precise optimization objective which, it turns out, CNNs attempt to minimize.

The work in [PRE16] further proposed improved pursuits for approximating the sparse

representations of the network, or feature maps, such as the Layered Basis Pursuit algorithm.

Nonetheless, as we will show later, neither this nor the forward pass serve the ML-CSC model

exactly, as they do not provide signals that comply with the model assumptions. In addition, the

theoretical guarantees accompanying these layered approaches suffer from bounds that become

looser with the network’s depth. The lack of a suitable pursuit, in turn, obscures how to properly

sample from the ML-CSC model, and how to train the model’s dictionaries from real data.

In this work we undertake a fresh study of the ML-CSC and of pursuit algorithms for signals
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in this model. Our contributions will be guided by addressing the following questions:

1. Given proper convolutional dictionaries, how can one project1 signals onto the ML-CSC

model?

2. When will the model allow for any signal to be expressed in terms of nested sparse

representations? In other words, is the model empty?

3. What conditions should the convolutional dictionaries satisfy? and how can we adapt or

learn them to represent real-world signals?

4. How is the learning of the ML-CSC model related to traditional CNN and dictionary

learning algorithms?

5. What kind of performance can be expected from this model?

Before proceeding, it is worth noting that the model we analyze in this work is related to

several recent contributions, both in the realm of sparse representations and deep-learning. On

the one hand, the ML-CSC model is tightly connected to dictionary learning approaches, in

particular to those leveraging different structures or constraints in the construction of such

dictionary. A very partial list of these works include the Chasing Butterflies approach [LMG15],

fast transform learning [CMTD15], Trainlets [SOZE16], among several others. On the other hand,

and because of the unsupervised flavor of the learning algorithm, our work shares connections

to sparse auto-encoders [Ng11], and in particular to the k-sparse [MF13] and winner-take-all

versions [MF15].

Lastly, because the analyzis in this chapter will not be focused on local vectors or structures,

we will return to the traditional notation of employing uppercase notation for matrices exclusively,

and lowercase for vectors.

6.2 Preliminaries on ML-CSC

The Multi-Layer Convolutional Sparse Coding (ML-CSC) model is a natural extension of the

CSC described above, as it assumes that a signal can be expressed by sparse representations at

different layers in terms of nested convolutional filters. Suppose x = D1γ1, for a convolutional

dictionary D1 ∈ RN×Nm1 and an `0,∞-sparse representation γ1 ∈ RNm1 . One can cascade

this model by imposing a similar assumption on the representation γ1, i.e., γ1 = D2γ2, for a

corresponding convolutional dictionary D2 ∈ RNm1×Nm2 with m2 local filters and a `0,∞-sparse

γ2, as depicted in Figure 6.1. In this case, D2 is a also a convolutional dictionary with local

filters skipping m1 entries at a time2 – as there are m1 channels in the representation γ1.

1By projection, we refer to the task of getting the closest signal to the one given that obeys the model
assumptions.

2This construction provides operators that are convolutional in the space domain, but not in the channel
domain – just as for CNNs.
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Figure 6.1: The CSC model (top), and its ML-CSC extension by imposing a similar model on
γ1 (bottom). From a local perspective, a patch from the signal, P0,jx has a corresponding

sparse stripe given by S1,jγ1. An analogous decomposition can be stated for a patch from the
signal γ1, represented by P1,jγ1.

Because of this multi-layer structure, vector γ1 can be viewed both as a sparse representation

(in the context of x = D1γ1) or as a signal (in the context of γ1 = D2γ2). Thus, one one can

refer to both its stripes (looking backwards to patches from x) or its patches (looking forward,

corresponding to stripes of γ2). In this way, when analyzing the ML-CSC model we will not only

employ the `0,∞ norm as defined above, but we will also leverage its patch counterpart, where

the maximum is taken over all patches from the sparse vector by means of a patch extractor

operator Pi. In order to make their difference explicit, we will denote them as ‖γ‖s0,∞ and

‖γ‖p0,∞ for stripes and patches, respectively. In addition, we will employ the `2,∞ norm version,

naturally defined as ‖γ‖s2,∞ = max
i
‖Siγ‖2, and analogously for patches.

We now formalize the model definition:

Definition 23. ML-CSC model:

Given a set of convolutional dictionaries {Di}Li=1 of appropriate dimensions, a signal x ∈ RN
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admits a representation in terms of the ML-CSC model if

x = D1γ1, ‖γ1‖s0,∞ ≤ λ1,

γ1 = D2γ2, ‖γ2‖s0,∞ ≤ λ2,

...

γL−1 = DLγL, ‖γL‖s0,∞ ≤ λL.

We will refer to the set of signals satisfying the ML-CSC model assumptions with parameter

λ = [λ1, . . . , λL], as the set Mλ. In addition, when referring to a signal x ∈Mλ, we will often

denote it by x(γi) to emphasize its decomposition in terms of the nested representations {γi}Li=1.

Note that x ∈ Mλ can also be expressed as x = D1D2 . . .DLγL. For the purpose of the

following derivations, define D(i) to be the effective dictionary at the ith level, i.e., D(i) =

D1D2 . . .Di. This way, one can concisely write

x = D(L)γL,

where D(L) is the L-layers Convolutional Dictionary. Generally, we have that x = D(i)γi, 1 ≤
i ≤ L.

Interestingly, the ML-CSC can be interpreted as a special case of a CSC model: one that

enforces a very specific structure on the intermediate representations. We make this statement

precise in the following Lemma:

Lemma 6.2.1. Given the ML-CSC model described by the set of convolutional dictionaries

{Di}Li=1, with filters of spatial dimensions ni and channels mi, any dictionary D(i) = D1D2 . . .Di

is a convolutional dictionary with mi local atoms of dimension neff
i =

∑i
j=1 nj − (i− 1). In other

words, the ML-CSC model is a structured global convolutional model.

The proof of this lemma is rather straight forward, and we include it in Appendix 6.7.1. Note

that what was denoted as the effective dimension at the ith layer is nothing else than what is

known in the deep learning community as the receptive field of a filter at layer i. Here, we have

made this concept precise in the context of the ML-CSC model.

As it was presented, the convolutional model assumes that every n-dimensional atom is

located at every possible location, which implies that the filter is shifted with strides of s = 1. An

alternative, which effectively reduces the redundancy of the resulting dictionary, is to consider

a stride greater than one. In such case, the resulting dictionary is of size N ×Nm1/s for one

dimensional signals, and N × Nm1/s
2 for images. This construction, popular in the CNN

community, does not alter the effective size of the filters but rather decreases the length of

each stripe by a factor of s in each dimension. In the limit, when s = n1, one effectively

considers non-overlapping blocks and the stripe will be of length3 m1 - the number of local filters.

3When s = n1, the system is no longer shift-invariant, but rather invariant with a shift of n samples.
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Figure 6.2: From atoms to molecules: Illustration of the ML-CSC model for a number 6. Two
local convolutional atoms (bottom row) are combined to create slightly more complex structures

– molecules – at the second level, which are then combined to create the global atom
representing, in this case, a digit. Note that even though the atoms are local (with small
support) and convolutional, we depict them in their respective locations within the global

structure. Refer to the main body (Section 6.2) for a detailed description of this decomposition.

Naturally, one can also employ s > 1 for any of the multiple layers of the ML-CSC model. We

will consider s = 1 for all layers in our derivations for simplicity.

The ML-CSC imposes a unique structure on the global dictionary D(L), as it provides a

multi-layer linear composition of simpler structures. In other words, D1 contains (small) local

n1-dimensional atoms. The product D1D2 contains in each of its columns a linear combination

of atoms from D1, merging them to create molecules. Further layers continue to create more

complex constructions out of the simpler convolutional building blocks. We depict an example of

such decomposition in Figure 6.2 for a 3rd-layer convolutional atom of the digit “6”. While the

question of how to obtain such dictionaries will be addressed later on, let us make this illustration

concrete: consider this atom to be given by x0 = D1D2d3, where d3 is sparse, producing the

upper-most image x0. Denoting by T (d3) = Supp(d3), this atom can be equally expressed as

x0 = D(2)d3 =
∑

j∈T (d3)

d
(2)
j dj3.

In words, the effective atom is composed of a few elements from the effective dictionary D(2).

These are the building blocks depicted in the middle of Figure 6.2. Likewise, we now focus on

the fourth of such atoms, d
(2)
j4

= D1d2,j4 . In this particular case, ‖d2,j4‖0 = 2. Indicating these
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two non-zeros elements by i1 and i2, we can express:

d
(2)
j4

= d
(1)
i1
di12,j1 + d

(1)
i2
di22,j1 .

These two atoms from D1 are precisely those appearing in the bottom of the decomposition.

6.2.1 Pursuit in the noisy setting

Real signals might contain noise or deviations from the above idealistic model assumption,

preventing us from enforcing the above model exactly. Consider the scenario of acquiring a signal

y = x + v, where x ∈ Mλ and v is a nuisance vector of bounded energy, ‖v‖2 ≤ E0. In this

setting, the objective is to estimate all the representations γi which explain the measurements y

up to an error of E0. This pursuit problem – searching for sparse convolutional features under

the ML-CSC model – can be formulated in a number of different ways depending on the model

deviations assumed at each layer. In its most general form, this pursuit is represented by the

Deep Coding Problem (DCPEλ), as introduced in [PRE16]:

Definition 24. DCPEλ Problem:

For a global signal y, a set of convolutional dictionaries {Di}Li=1, and vectors λ and E , the deep

coding problem DCPEλ is defined as:

(DCPEλ) : find {γi}Li=1 s.t. ‖y −D1γ1‖2 ≤ E0, ‖γ1‖s0,∞ ≤ λ1

‖γ1 −D2γ2‖2 ≤ E1, ‖γ2‖s0,∞ ≤ λ2

...
...

‖γL−1 −DLγL‖2 ≤ EL−1, ‖γL‖s0,∞ ≤ λL,

where the scalars λi and Ei are the ith entries of λ and E , respectively.

The solution to this problem was shown to be stable in terms of a bound on the `2-distance

between the estimated representations γ̂i and the true ones γi. These results depend on the

characterization of the dictionaries through their mutual coherence, µ(D), which measures the

maximal normalized correlation between atoms in the dictionary. Formally, assuming the atoms

are normalized as ‖di‖2 = 1 ∀i, this measure is defined as

µ(D) = max
i 6=j
|dTi dj |.

Relying on this measure, Theorem 5 in [PRE16] shows that given a signal x(γi) ∈ PMλ

contaminated with noise of known energy E2
0 , if the representations satisfy the sparsity constraint

‖γi‖s0,∞ <
1

2

(
1 +

1

µ(Di)

)
,
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then the solution to the DCPEλ given by {γ̂i}Li=1 satisfies

‖γi − γ̂i‖22 ≤ 4E0
2

i∏
j=1

4i−1

1− (2‖γj‖s0,∞ − 1)µ(Dj)
.

In the particular instance of the DCPEλ where Ei = 0 for 1 ≤ i ≤ L− 1, the above bound can be

made tighter by a factor of 4i−1 while preserving the same form.

These results are encouraging, as they show for the first time stability guarantees for a

problem for which the forward pass provides an approximate solution. More precisely, if the

above model deviations are considered to be greater than zero (Ei > 0) several layer-wise

algorithms, including the forward pass of CNNs, provide approximations to the solution of this

problem [PRE16].

Two remarks should be noted about the above stability result:

1. The bound increases with the number of layers or the depth of the network. This is a

direct consequence of the layer-wise relaxation in the above pursuit, which causes these

discrepancies to accumulate over the layers.

2. Given the underlying signal x(γi) ∈ Mλ, with representations {γi}Li=1, this problem

searches for their corresponding estimates {γ̂i}Li=1. However, because at each layer ‖γ̂i−1−
Diγ̂i‖2 > 0, this problem does not provide representations for a signal in the model. In

other words, x̂ 6= D1γ̂1, γ̂1 6= D2γ̂2, and generally x̂ /∈Mλ.

6.3 A Projection Alternative

In this section we provide an alternative approach to the problem of estimating the underlying

representations γi under the same noisy scenario of y = x(γi) + v. In particular, we are

interested in projecting the measurements y onto the set Mλ. Consider the following projection

problem:

Definition 25. ML-CSC Projection PMλ
:

For a signal y and a set of convolutional dictionaries {Di}Li=1, define the Multi-Layer Convolu-

tional Sparse Coding projection as:

(PMλ
) : min

{γi}Li=1

‖y − x(γi)‖2 s.t. x(γi) ∈Mλ. (6.1)

Note that this problem differs from the DCPEλ counterpart in that we seek for a signal close to y,

whose representations γi give rise to x(γi) ∈Mλ. This is more demanding (less general) than

the formulation in the DCPEλ . Put differently, the PMλ
problem can be considered as a special

case of the DCPEλ where model deviations are allowed only at the outer-most level. From this

perspective, the PMλ
is an instance of the DCPEλ for which Ei = 0 for i ≥ 1. Recall that the

theoretical analysis of the DCPEλ problem indicated that the error thresholds should increase

with the layers. Here, the PMλ
problem suggests a completely different approach.
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6.3.1 Stability of the projection PMλ

Given y = x(γi) + v, one can seek for the underlying representations γi through either the

DCPEλ or PMλ
problem. In light of the above discussion and the known stability result for

the DCPEλ problem, how close will the solution of the PMλ
problem be from the true set of

representations? The answer is provided through the following result.

Theorem 26. Stability of the solution to the PMλ
problem:

Suppose x(γi) ∈ Mλ is observed through y = x + v, where v is a bounded noise vector,

‖v‖2 ≤ E0, and ‖γi‖s0,∞ = λi <
1
2

(
1 + 1

µ(D(i))

)
, for 1 ≤ i ≤ L. Consider the set {γ̂i}Li=1 to be

the solution of the PMλ
problem. Then,

‖γi − γ̂i‖22 ≤
4E2

0

1− (2‖γi‖s0,∞ − 1)µ(D(i))
.

Before presenting the proof of this claim, we note a few remarks on this result:

1. The obtained bound for every layer depends only on the sparsity of the representation and

on the mutual coherence of the effective dictionary for that layer, D(i). This allows us to

provide a bound which is not cumulative across the layers – it does not grow with the

depth of the network.

2. Unlike the stability result for the DCPEλ problem, the assumptions on the sparse vectors γi

are given in terms of the mutual coherence of the effective dictionaries D(i). Interestingly

enough, we will see in the experimental section that one can in fact have that µ(D(i−1)) >

µ(D(i)) in practice; i.e., the effective dictionary becomes incoherent as it becomes deeper.

On the other hand, the deeper layers correspond to higher abstractions levels, and the

corresponding representations are indeed expected to be sparser.

3. While the conditions imposed on the sparse vectors γi might seem prohibitive, one should

remember that this follows from a worst case analysis. Moreover, one can effectively

construct analytic nested convolutional dictionaries with small coherence measures, as

shown in [PRE16].

We now prove the stability result.

Proof. Denote the solution to the PMλ
problem by x̂; i.e., x̂ = D(i)γ̂i. Given that the original

signal x satisfies ‖y − x‖2 ≤ E0, the solution to the PMλ
problem, x̂ must satisfy

‖y − x̂‖2 ≤ ‖y − x‖2 ≤ E0,

as this is the signal which provides the shortest `2 (data-fidelity) distance from y. Note that

because x̂(γi) ∈ Mλ, we can have that x̂ = D(i)γ̂i, ∀ 1 ≤ i ≤ L. Recalling Lemma 6.7.1,

the product D1D2 . . .Di is a convolutional dictionary. In addition, we have required that
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‖γ̂i‖s0,∞ ≤ λi < 1
2

(
1 + 1

µ(D(i))

)
. Therefore, from the same arguments presented in [PSE17b], it

follows that

‖γi − γ̂i‖22 ≤
4E2

0

1− (2‖γi‖s0,∞ − 1)µ(D(i))
.

Interestingly, one can also formulate bounds for the stability of the solution, i.e. ‖γi − γ̂i‖22,

which are the tightest for the inner-most layer, and then increase as one moves to shallower layers

– precisely the opposite behavior of the solution to the DCPEλ problem. This result, however,

provides bounds that are generally looser than the one presented in the above theorem, and so

we defer this to Appendix 6.7.2.

6.3.2 Pursuit Algorithms

Both the DCPEλ and PMλ
problems seek for underlying representations γ̂i which explain – under

different assumptions – the measurements y. The next natural question is how and to what

accuracy one can retrieve the solutions of those respective problems. In other words, how does

one solve these problems in practice?

As shown in [PRE16], one can approximate the solution to the DCPEλ in a layer-wise manner,

solving for the sparse representations γ̂i progressively from i = 1, . . . , L. Surprisingly, the

Forward Pass of a CNN is one such algorithm, and it provides an approximate solution of this

problem. Better alternatives were also proposed, such as the Layered BP algorithm, where

each representation γ̂i is sparse coded (in a Basis Pursuit formulation) given the previous

representation γ̂i−1 and dictionary Di. As solutions to the DCPEλ problem, naturally, these

algorithms inherit the layer-wise relaxation referred above, which causes the theoretical bounds

to increase as a function of the layers or network depth.

Moving to the variation proposed in this work, how can one solve the PMλ
problem in

practice? Applying the above layer-wise pursuit is clearly not an option, since after obtaining

a necessarily distorted estimate γ̂1 we cannot proceed with equalities for the next layers, as

γ1 does not necessarily have a perfectly sparse representation with respect to D2. Herein we

present a simple approach based on a global sparse coding solver which yields a stable solution.

Algorithm 6.1 ML-CSC Pursuit

Input: y, {Di}, k

γ̂L ← Pursuit(y,D(L), k)

for j = L, . . . , 1 do

γ̂j−1 ← Djγ̂j

end

return {γ̂i}

Consider Algorithm 6.1. This approach circumvents the problem of sparse coding the

intermediate features while guaranteeing their exact expression in terms of the following layer.

This is done by first running a Pursuit for the deepest representation through an algorithm
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which provides an approximate solution to the following problem:

min
γ
‖y −D(L)γ‖22 s.t. ‖γ‖s0,∞ ≤ k. (6.2)

In a setting where a signal x(γi) ∈ PMλ
has been corrupted with noise of known energy E2

0 ,

one could reformulate this problem by analogously minimizing over the `0,∞ norm of γ subject

to the constraint ‖y −D(L)γ‖22 ≤ E2
0 . We employ the formulation in (6.2), however, as this

preserves the structure of our projection formulation.

Once the deepest representation has been estimated, we proceed by obtaining the remaining

ones by simply applying their definition, thus assuring that x̂ = D(i)γ̂i ∈Mλ. While this might

seem like a dull strategy, we will see in the next section that, if the measurements y are close

enough to a signal in the model, Algorithm 6.1 indeed provides stable estimates γ̂i. In fact,

the resulting stability bounds will be shown to be generally tighter than those existing for the

layer-wise pursuit alternative. Moreover, as we will later see in the Results section, this approach

can effectively be harnessed in practice in a real-data scenario.

6.3.3 Stability Guarantees for Pursuit Algorithms

Given a signal y = x(γi) + v, and the respective solution of the ML-CSC Pursuit in Algorithm

6.1, how close will the estimated γ̂i be to the original representations γi? These bounds will

clearly depend on the specific Pursuit algorithm employed to obtain γ̂L. In what follows, we will

present two stability guarantees that arise from solving this sparse coding problem under two

different strategies: a greedy and a convex relaxation approach. Before presenting these results,

however, we shall need to state two elements that will become necessary for our derivations.

The first one is a property that relates to the propagation of the support, or non-zeros, across

the layers. Given the support of a sparse vector T = Supp(γ), consider dictionary DT as the

matrix containing only the columns indicated by T . Define ‖DT ‖0∞ =
∑n

i=1 ‖RiDT ‖0∞, where

Ri extracts the ith row of the matrix on its right-hand side. In words, ‖DT ‖0∞ simply counts

the number of non-zero rows of DT . With it, we now define the following property:

Definition 27. Non Vanishing Support (N.V.S.):

A sparse vector γ with support T satisfies the the N.V.S property for a given dictionary D if

‖Dγ‖0 = ‖DT ‖0∞.

Intuitively, the above property implies that the entries in γ will not cause two or more atoms to

be combined in such a way that (any entry of) their supports cancel each other. Notice that

this is a very natural assumption to make. Because our derivations will follow a worse-case and

deterministic analysis, however, we will need this property to formulate recovery guarantees for

pursuit algorithms. Alternatively, one could assume the non-zero entries from γ to be Gaussian

distributed, and in this case the N.V.S. property holds almost surely.

145

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 P

h.
D

. T
he

si
s 

 P
H

D
-2

01
8-

01
.r

ev
is

ed
 -

 2
01

8



A direct consequence of the above property is that of maximal cardinality of representations.

If γ satisfies the the N.V.S property for a dictionary D, and γ̄ is another sparse vector with

equal support (i.e., Supp(γ) = Supp(γ̄)), then necessarily Supp(Dγ̄) ⊆ Supp(Dγ), and thus

‖Dγ‖0 ≥ ‖Dγ̄‖0. This follows from the fact that the number of non-zeros in Dγ̄ cannot be

greater than the sum of non-zero rows from the set of atoms, DT .

The second element concerns the local stability of the Stripe-RIP, the convolutional version

of the Restricted Isometric Property [CT05]. As defined in [PSE17b], a convolutional dictionary

D satisfies the Stripe-RIP condition with constant δk if, for every γ such that ‖γ‖s0,∞ = k,

(1− δk)‖γ‖22 ≤ ‖Dγ‖22 ≤ (1 + δk)‖γ‖22. (6.3)

The S-RIP bounds the maximal change in (global) energy of a `0,∞-sparse vector when multiplied

by a convolutional dictionary. We would like to establish an equivalent property but in a

local sense. Recall the ‖x‖p2,∞ norm, given by the maximal norm of a patch from x, i.e.

‖x‖p2,∞ = max
i
‖Pix‖2. Analogously, one can consider ‖γ‖s2,∞ = max

i
‖Siγ‖2 to be the maximal

norm of a stripe from γ.

Now, is ‖Dγ‖p2,∞ nearly isometric? The (partially affirmative) answer is given in the form of

the following Lemma, which we prove in Appendix 6.7.3.

Lemma 6.3.1. Local one-sided near isometry property:

If D is a convolutional dictionary satisfying the Stripe-RIP condition in (6.3) with constant δk,

then

‖Dγ‖2,p2,∞ ≤ (1 + δk) ‖γ‖2,s2,∞.

This result is worthy in its own right, as it shows for the first time that not only the CSC

model is globally stable for `0,∞-sparse signals, but that one can also bound the change in

energy in a local sense (in terms of the `2,∞ norm). On the other hand, this property states

nothing unexpected: if the CSC model is fully described by a shift-invariant local model, then

its properties should be able to be characterized in a local manner as well. Lastly, while the

above Lemma only refers to the upper bound of ‖Dγ‖2,p2,∞, we conjecture that an analogous

lower bound can be shown to hold as well. The respective proof is more involved, however, and

a matter of current work.

With these elements, we can now move to the stability of the solutions provided by Algorithm

6.1:

Theorem 28. Stable recovery of the Multi-Layer Pursuit Algorithm in the convex relaxation

case:

Suppose a signal x(γi) ∈ Mλ is contaminated with locally-bounded noise v, resulting in

y = x + v, ‖v‖p2,∞ ≤ ε0. Assume that all representations γi satisfy the N.V.S. property for

the respective dictionaries Di, and that ‖γi‖s0,∞ = λi <
1
2

(
1 + 1

µ(Di)

)
, for 1 ≤ i ≤ L and
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‖γL‖s0,∞ = λL ≤ 1
3

(
1 + 1

µ(D(L))

)
. Consider solving the Pursuit stage in Algorithm 6.1 as

γ̂L = arg min
γ
‖y + D(L)γ‖|22 + ζL‖γ‖1,

for ζL = 4ε0, and set γ̂i−1 = Diγ̂i, i = L, . . . , 1. Then, for every 1 ≤ i ≤ L layer,

1. Supp(γ̂i) ⊆ Supp(γi),

2. ‖γ̂i − γi‖
p
2,∞ ≤ εL

L∏
j=i+1

√
3cj
2

,

where εL = 15
2 ε0

√
‖γL‖

p
0,∞ is the error at the last layer, and cj is a coefficient that depends on

the ratio between the local dimensions of the layers, cj =
⌈

2nj−1−1
nj

⌉
.

Theorem 29. Stable recovery of the Multi-Layer Pursuit Algorithm in the greedy case:

Suppose a signal x(γi) ∈Mλ is contaminated with energy-bounded noise v, such that y = x+v,

‖y− x‖2 ≤ E0, and ε0 = ‖v‖P2,∞. Assume that all representations γi satisfy the N.V.S. property

for the respective dictionaries Di, with ‖γi‖s0,∞ = λi <
1
2

(
1 + 1

µ(Di)

)
, for 1 ≤ i ≤ L, and

‖γL‖s0,∞ <
1

2

(
1 +

1

µ(D(L))

)
− 1

µ(D(L))
· ε0
|γminL |

, (6.4)

where γminL is the minimal entry in the support of γL. Consider approximating the solution to

the Pursuit step in Algorithm 6.1 by running Orthogonal Matching Pursuit for ‖γL‖0 iterations.

Then

1. Supp(γ̂i) ⊆ Supp(γi),

2. ‖γ̂i − γi‖22 ≤
E20

1−µ(D(L))(‖γL‖s0,∞−1)

(
3
2

)L−i
.

The proofs of both Theorems 28 and 29 are included in Appendix 6.7.4 and 6.7.4, respectively.

The coefficient cj refers to the ratio between the filter dimensions at consecutive layers, and

assuming ni ≈ ni+1 (which indeed happens in practice), this coefficient is roughly 2. Importantly,

and unlike the bounds provided for the layer-wise pursuit algorithm, the recovery guarantees

are the tightest for the inner-most layer, and the bound increases slightly towards shallower

representations. The relaxation to the `1 norm, in the case of the BP formulation, provides local

error bounds, while the guarantees for the greedy version, in its OMP implementation, yield a

global bound on the representation error.

These results show the flavor of theoretical claims that can be obtained for the proposed

ML-CSC Pursuit Algorithm. By employing similar derivations to those detailed in the respective

proofs, one could – in principle – provide recovery claims for other versions of this method, by

employing other sparse coding strategies.
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Algorithm 6.2 ML-CSC Projection Algorithm

Init: x∗ = 0 for k = 1 : λL do

γ̂L ← OMP(y,D(L), k) for j = L : −1 : 1 do
γ̂j−1 ← Djγ̂j

end
if ‖γ̂i‖s0,∞ > λi for any 1 ≤ i < L then

break
end
else

x∗ ← D(i)γ̂i
end

end
return x∗

6.3.4 Projecting General Signals

In the most general case, i.e. removing the assumption that y is close enough to a signal in the

model, Algorithm 6.1 by itself might not solve PMλ
. Consider we are given a general signal y and

a model Mλ, and we run the ML-CSC Pursuit with k = λL obtaining a set of representations

{γ̂j}. Clearly ‖γ̂L‖s0,∞ ≤ λL. Yet, nothing guarantees that ‖γ̂i‖s0,∞ ≤ λi for i < L. In other

words, in order to solve PMλ
one must guarantee that all sparsity constraints are satisfied.

Algorithm 6.2 progressively recovers sparse representations to provide a projection for any

general signal y. The solution is initialized with the zero vector, and then the OMP algorithm

is applied with a progressively larger `0,∞ constraint on the deepest representation4, from 1

to λL. The only modification required to run the OMP in this setting is to check at every

iteration the value of ‖γ̂L‖s0,∞, and to stop accordingly. At each step, given the estimated γ̂L,

the intermediate features and their `0,∞ norms, are computed. If all sparsity constraints are

satisfied, then the algorithm proceeds. If, on the other hand, any of the constraints is violated,

the previously computed x∗ is reported as the solution.

This algorithm can be shown to be a greedy approximation to an optimal projection algorithm,

under certain assumptions, and we now provide a sketch of the proof of this claim. Consider the

first iteration of the above method, where k = 1. If OMP succeeds in providing the closest γ̂L

subject to the respective constraint, i.e. providing the solution to

min
γ
‖y −D(L)γ‖22 s.t. ‖γ‖s0,∞ ≤ 1,

and if ‖γ̂i‖s0,∞ ≤ λi for every i, then this solution effectively provides the closest signal to y in

the model defined by λ = [λ1, . . . , 1]. If λL = 1, we are done. Otherwise, if λL > 1, we might

increase the number of non-zeros in γ̂L, while decreasing the `2 distance to y. This is done by

continuing to the next iteration: running again OMP with the constraint ‖γ̂L‖s0,∞ ≤ 2, and

obtaining the respective γ̂i.

4Instead of repeating the pursuit from scratch at every iteration, one might-warm start the OMP algorithm by
employing current estimate, γ̂L, as initial condition so that only new non-zeros are added.
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At any kth iteration, due to the nature of the OMP algorithm, Supp(γ̂k−1
L ) ⊆ Supp(γ̂kL). If

all estimates γ̂i satisfy the N.V.S. property for the respective dictionaries Di, then the sparsity

of each γ̂i is non-decreasing through the iterations, ‖γ̂k−1
i ‖s0,∞ ≤ ‖γ̂

k
i ‖s0,∞. For this reason,

if an estimate γ̂kL is obtained such that any of the corresponding `0,∞ constraints is violated,

then necessarily one constraint will be violated at the next (or any future) iteration. Therefore,

the algorithm outputs the signal corresponding to the iteration before one of the constraints

was violated. A complete optimal (combinatorial) algorithm would need to retrace its steps

and replace the last non-zero added to γ̂kL by the second best option, and then evaluate if

all constraints are met for this selection of the support. This process should be iterated, and

Algorithm 6.2 provides a greedy approximation to this idea.

As a final comment on this subject, while Algorithms 6.1 and 6.2 were presented separately,

they are indeed related and one could envision combining them into a single method. The

distinction between them was motivated by making the derivations of our theoretical analysis

easier to grasp. Nevertheless, stating further theoretical claims without the assumption of the

signal y being close to an underlying x(γi) ∈Mλ is non-trivial, and we defer a further analysis

of this case for future work.

6.3.5 Summary - Pursuit for the ML-CSC

Before proceeding, let us briefly summarize what we have introduced so far. We have defined a

projection problem, PMλ
, seeking for the closest signal in the model Mλ to the measurements

y. We have shown that if the measurements y are close enough to a signal in the model, i.e.

y = x(γi) + v, with bounded noise v, then the ML-CSC Pursuit in Algorithm 6.1 manages to

obtain approximate solutions that are not far from these representations, by deploying either

the OMP or the BP algorithms. In particular, the support of the estimated sparse vectors is

guaranteed to be a subset of the correct support, and so all γ̂i satisfy the model constraints. In

doing so we have introduced the N.V.S. property, and we have proven that the CSC and ML-CSC

models are locally stable. Lastly, if no prior information is known about the signal y, we have

proposed an OMP-inspired algorithm that finds the closest signal x(γi) to any measurements y

by gradually increasing the support of all representations γ̂i while guaranteeing that the model

constraints are satisfied.

We now move to the next major difficulty with the ML-CSC model: studying the convolutional

filters and the need to learn its parameters.

6.4 Learning the model

6.4.1 Preliminaries

The entire analysis presented so far relies on the assumption of the existence of proper dictionaries

Di allowing for corresponding nested sparse features γi. Clearly, the ability to obtain such

representations greatly depends on the design and properties of these dictionaries.
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While in the traditional sparse modeling scenario certain analytically-defined dictionaries

(such as the Discrete Cosine Transform) often perform well in practice, in the ML-CSC case it is

hard to propose an off-the-shelf construction which would allow for any meaningful decompositions.

To see this more clearly, consider obtaining γ̂L with Algorithm 6.1 removing all other assumptions

on the dictionaries Di. In this case, nothing will prevent γ̂L−1 = DLγ̂L from being dense. While

one could argue that this is an artifact of the presented algorithm (for instance, for not explicitly

enforcing both representations to be sparse), nothing guarantees that any collection of dictionaries

would allow for any signal with nested sparse components γi. In other words, how do we know

if the model represented by {Di}Li=1 is not empty?

To illustrate this important point, consider the case where Di are random – a popular

construction in other sparsity-related applications. In this case, every atom from the dictionary

DL will be a random variable djL ∼ N (0, σ2
LI). In this case, one can indeed construct γL,

with ‖γL‖s0,∞ ≤ 2, such that every entry from γL−1 = DLγL will be a random variable

γjL−1 ∼ N (0, σ2
L), ∀ j. Thus, Pr

(
γjL−1 = 0

)
= 0. As we see, there will not exist any sparse (or

dense, for that matter) γL which will create a sparse γL−1. In other words, for this choice of

dictionaries, the ML-CSC model is empty.

6.4.2 Sparse Dictionaries

From the discussion above one can conclude that one of the key components of the ML-CSC

model is sparse dictionaries: if both γL and γL−1 = DLγL are sparse, then atoms in D must

indeed contain only a few non-zeros. We make this observation concrete in the following lemma.

Lemma 6.4.1. Dictionary Sparsity Condition

Consider the ML-CSC model Mλ described by the the dictionaries {Di}Li=1 and the layer-wise

`0,∞-sparsity levels λ1, λ2, . . . , λL. Given γL : ‖γL‖s0,∞ ≤ λL and constants ci =
⌈

2ni−1−1
ni

⌉
, the

signal x = D(L)γL ∈Mλ if

‖Di‖0 ≤
λi−1

λici
, ∀ 1 < i ≤ L.

The simple proof of this Lemma is included in Appendix 6.7.5. Notably, while this claim

does not tell us if a certain model is empty, it does guarantee that if the dictionaries satisfy a

given sparsity constraint, one can simply sample from the model by drawing the inner-most

representations such that ‖γL‖s0,∞ ≤ λL. One question remains: how do we train such dictionaries

from real data?

6.4.3 Learning Formulation

One can understand from the previous discussion that there is no hope in solving the PMλ

problem for real signals without also addressing the learning of dictionaries Di that would allow

for the respective representations. To this end, considering the scenario where one is given a

collection of K training signals, {yk}Kk=1, we upgrade the PMλ
problem to a learning setting in
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the following way:

min
{γki },{Di}

K∑
k=1

‖yk − xk(γki ,Di)‖22 s.t.

{
xk ∈Mλ,

‖dji‖2 = 1,∀ i, j
(6.5)

We have included the constraint of every dictionary atom, of every level, to have a unit norm to

prevent arbitrarily small coefficients in the representations γki . This formulation, while complete,

is difficult to address directly. To begin with, the constraints on the representations γi are

coupled, just as in the pursuit problem discussed in the previous section. In addition, the sparse

representations now also depend on the variables Di. In what follows, we provide a relaxation of

this cost function that will result in a simple learning algorithm.

The problem above can also be understood from the perspective of minimizing the number

of non-zeros in the representations at every layer, subject to an error threshold – a typical

reformulation of sparse coding problems. Our main observation arise from the fact that, since

γL−1 is function of both DL and γL, one can upper-bound the number of non-zeros in γL−1 by

that of γL. More precisely,

‖γL−1‖s0,∞ ≤ cL‖DL‖0‖γL‖s0,∞,

where cL is a constant5. Therefore, instead of minimizing the number of non-zeros in γL−1, we

can address the minimization of its upper bound by minimizing both ‖γL‖s0,∞ and ‖DL‖0. This

argument can be extended to any layer, and we can generally write

‖γi‖s0,∞ ≤ c
L∏

j=i+1

‖Dj‖0‖γL‖s0,∞.

In this way, minimizing the sparsity of any ith representation can be done implicitly by minimizing

the sparsity of the last layer and the number of non-zeros in the dictionaries from layer (i+ 1) to

L. Put differently, the sparsity of the intermediate convolutional dictionaries serve as proxies for

the sparsity of the respective representation vectors. Following this observation, we now recast

the problem in Equation (6.5) into the following Multi-Layer Convolutional Dictionary Learning

Problem:

min
{γkL},{Di}

K∑
k=1

‖yk −D1D2 . . .DLγ
k
L‖22 +

L∑
i=2

ζi‖Di‖0 s.t.

{
‖γkL‖s0,∞ ≤ λL,
‖dji‖2 = 1, ∀ i, j

(6.6)

Under this formulation, this problem seeks for sparse representations γkL for each example yk,

while forcing the intermediate convolutional dictionaries (from layer 2 to L) to be sparse. The

reconstructed signal, x = D1γ1, is not expected to be sparse, and so there is no reason to

enforce this property on D1. Note that there is now only one sparse coding process involved –

5From [PRE16], we have that ‖γL−1‖
p
0,∞ ≤ ‖DL‖0‖γL‖s0,∞. From here, and denoting by cL the upper-bound

on the number of patches in a stripe from γL−1 given by cL =
⌈

2nL−1−1

nL

⌉
, we can obtain a bound to ‖γL−1‖s0,∞.
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that of γkL – while the intermediate representations are never computed explicitly. Recalling

the theoretical results from the previous section, this is in fact convenient as one only has to

estimate the representation for which the recovery bound is the tightest.

Following the theoretical guarantees presented in Section 6.3, one can alternatively replace

the `0,∞ constraint on the deepest representation by a convex `1 alternative. The resulting

formulation resembles the lasso formulation of the PMλ
problem, for which we have presented

theoretical guarantees in Theorem 28. In addition, we replace the constraint on the `2 of the

dictionary atoms by an appropriate penalty term, recasting the above problem into a simpler

(unconstrained) form:

min
{γkL},{Di}

K∑
k=1

‖yk −D1D2 . . .DLγ
k
L‖22 + ι

L∑
i=1

‖Di‖2F +
L∑
i=2

ζi‖Di‖0 + λ‖γkL‖1. (6.7)

The problem in Equation (6.7) is highly non-convex, due to the `0 terms and the product of

the factors. In what follows, we present an online alternating minimization algorithm, based on

stochastic gradient descent, which seeks for the deepest representation γL and then progressively

updates the layer-wise convolutional dictionaries.

For each incoming sample yk (or potentially, a mini-batch), we will first seek for its deepest

representation γkL considering the dictionaries fixed. This is nothing but the PMλ
problem in

(6.1), which was analyzed in detail in the previous sections, and its solution will be approximated

through iterative shrinkage algorithms. In particular, we employ an efficient implementation

of the FISTA algorithm [BT09b]. Also, one should keep in mind that while representing each

dictionary by Di is convenient in terms of notation, these matrices are never computed explicitly –

which would be prohibitive. Instead, these dictionaries (or their transpose) are applied effectively

through convolution operators, common in the deep learning community. In addition, these

operators are expected to be very efficient to apply due to their high sparsity, and one could

in principle benefit from specific libraries to boost performance in this case, such as the one

in [LWF+15].

Given the obtained γkL, we then seek to update the respective dictionaries. As it is posed –

with a global `0 norm over each dictionary – this is nothing but a generalized pursuit as well.

Therefore, for each dictionary Di, we minimize the function in Problem (6.7) by applying T

iterations of projected gradient descent. This is done by computing the gradient of the `2 terms

in Problem (6.7) (call it f(Di)) with respect to a each dictionary Di (i.e., ∇f(Di)), making

a gradient step and then applying a hard-thresholding operation, Hζi(·), depending on the

parameter ζi. This is simply an instance of the Iterative Hard Thresholding algorithm [BD08]. In

addition, the computation of ∇f(Di) involves only multiplications the convolutional dictionaries

for the different layers. The overall algorithm is depicted in Algorithm 6.3, and we will expand

on further implementation details in the results section.

The parameters of the models involve the `1 penalty of the deepest representation, i.e. λ, and

the parameter for each dictionary, ζi. The first parameter can be set manually or determined

so as to obtain a given given representation error. On the other hand, the dictionary-wise ζi
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Algorithm 6.3 Multi-Layer Convolutional Dictionary Learning

Data: Training samples {yk}Kk=1, initial convolutional dictionaries {Di}Li=1

for k = 1, . . . ,K do
Draw yk at random

Sparse Coding: γL ← arg min
γ

‖yk −D(L)γ‖2 + λ‖γ‖1
Update Dictonaries:

for i = L, . . . , 1 do

for t = 1,. . . ,T do

Dt+1
i ← Hζi

[
Dt
i − η∇f(Dt

i)
]

end

end

for t = 1,. . . ,T do

Dt+1
1 ← Dt

1 − η∇f(Dt
1)

end

end

parameters are less intuitive to establish, and the question of how to set these values for a

given learning scenario remains a subject of current research. Nevertheless, we will show in the

experimental section that setting these manually results in effective constructions.

As a final comment, note this approach can also be employed to minimize Problem (6.6) by

introducing minor modifications: In the sparse coding stage, the Lasso is replaced by a `0,∞

pursuit, which can be tackled with a greedy alternative as the OMP (as described in Theorem

29) or by an Iterative Hard Thresholding alternative [BD08]. In addition, one could consider

employing the `1 norm as a surrogate for the `0 penalty imposed on the dictionaries. In this case,

their update can still be performed by the same projected gradient descent approach, though

replacing the hard thresholding with its soft counterpart.

6.4.4 Connection to related works

Naturally, the proposed algorithm has tight connections to several recent dictionary learning

approaches. For instance, our learning formulation is closely related to the Chasing Butterflies

work [LMG15], and our resulting algorithm is very similar of the PALM method employed by

the authors, initially proposed in [BST14]. However, their approach is designed for general

(not convolutional) multi-level dictionaries, and the algorithm is particularly targeted to lower

semicontinuous functions. The inspiring work of in [CMTD15], on the other hand, proposed a

learning approach where the dictionary is expressed as a cascade of convolutional filters with

sparse kernels, and they effectively showed how this approach can be used to approximate

large-dimensional analytic atoms such as those from wavelets and curvelets. Finally, as our

proposed approach effectively learns a sparse dictionary, we share some similarities with the

double-sparsity work from [RZE10]. In particular, in its Trainlets version [SOZE16], the authors

proposed to learn a dictionary as a sparse combination of cropped wavelets atoms. From the

previous comment on the work from [CMTD15], this could also potentially be expressed as a
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product of sparse convolutional atoms.

What is the connection between this learning formulation and that of deep convolutional

networks? Recalling the analysis presented in [PRE16], the Forward Pass is nothing but a layered

non-negative thresholding algorithm, the simplest form of a pursuit for the ML-CSC model

with layer-wise deviations. Therefore, if the pursuit for γ̂L in our setting is solved with such an

algorithm, then the problem in (6.7) implements a convolutional neural network with only one

RELU operator at the last layer, with sparse-enforcing penalties on the filters. Moreover, due the

data-fidelity term in our formulation, the proposed optimization problem provides nothing but a

convolutional sparse autoencoder. As such, our work is related to the extensive literature in this

topic. For instance, in [Ng11], sparsity is enforced in the hidden activation layer by employing a

penalty term proportional to the KL divergence between the hidden unit marginals and a target

sparsity probability. Other related works include the k-sparse autoencoders [MF13], where the

hidden layer is constrained to having exactly k non-zeros. In practice, this boils down to a simple

k−hard thresholding step of the hidden activation, and the neuron weights are updated with

gradient descent. In this respect, our work can be thought of a generalization of this work, where

the pursuit algorithm is more sophisticated than a simple thresholding operation, and where

the filters are composed by a cascade of sparse convolutional filters. More recently, the work

in [MF15] proposed the winner-take-all autoencoders. In a nutshell, these are non-symmetric

autoencoders having a few convolutional layers (with ReLu non-linearities) as the encoder, and

a simple linear decoder. Sparsity is enforced in what the authors refer to as “spatial” and a

“lifetime” sparsity.

Finally, and due to the fact that our formulation effectively provides a convolutional network

with sparse kernels, our approach is reminiscent of works attempting to sparsify the filters in

deep learning models. For instance, the work in [LWF+15] showed that the weights of learned

deep convolutional networks can be sparsified without considerable degradation of classification

accuracy. Nevertheless, one should perpend the fact that these works are motivated merely by

cheaper and faster implementations, whereas our model is intrinsically built by theoretically

justified sparse kernels. We do not attempt to compare our approach to such sparsifying methods

at this stage, and we defer this to future work.

6.5 Experiments

We now provide experimental results to demonstrate several aspects of the ML-CSC model. As

a case-study, we consider the MNIST dataset [LBBH98]. We define our model as consisting of 3

convolutional layers: the first one contains 32 local filters of size 7× 7 (with a stride of 2), the

second one consists of 128 filters of dimensions 5× 5× 32 (with a stride of 1), and the last one

contains 1024 filters of dimensions 7× 7× 128. At the third layer, the effective size of the atoms

is 28 – representing an entire digit.

Training is performed with Algorithm 6.3, using a mini-batch of 100 samples per iteration.

For the Sparse Coding stage, we leverage an efficient implementation of the FISTA [BT09b]

algorithm, and we adjust the penalty parameter λ to obtain roughly 15 non-zeros in the deepest
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Figure 6.3: Evolution of the Loss function, sparsity of the convolutional dictionaries and average
residual norm during training on the MNIST dataset.

representation γ3. The ζi parameters, the penalty parameters for the dictionaries sparsity levels,

are set manually for simplicity. In addition, and as it is commonly done in various Gradient

Descent methods, we employ a momentum term for the update of the dictionaries Di within the

projected gradient descent step in Algorithm 6.3, and set its memory parameter to 0.9. The

step size is set to 1, the update dictionary iterations is set as T = 1, ι = 0.001, and we run the

algorithm for 20 epochs, which takes approximately 30 minutes. Our implementation uses the

Matconvnet library, which leverages efficient functions for GPU6.

We depict the evolution of the Loss function during training in Figure 6.3, as well as the

sparsity of the second and third dictionaries and the average residual norm. The resulting

model is depicted in Figure 6.4. One can see how the first layer is composed of very simple

small-dimensional edges or blobs. The second dictionary, D2, is effectively 99% sparse, and its

non-zeros combine a few atoms from D1 in order to create slightly more complex edges, as the

ones in the effective dictionary D(2). Lastly, D3 is 99.8% sparse, and it combines atoms from

D(2) in order to provide atoms that resemble different kinds (or parts) of digits. These final

global atoms are nothing but a linear combination of local small edges by means of convolutional

sparse kernels.

Interestingly, we have observed that the mutual coherence of the effective dictionaries do not

necessarily increase with the layers, and they often decrease with the depth. While this measure

relates to worst-case analysis conditions and do not mean much in the context of practical

performance, one can see that the effective dictionary indeed becomes less correlated as the depth

increases. This is intuitive, as very simple edges – and at every location – are expected to show

large inner products, larger than the correlation of two more complex number-like structures.

This effect can be partially explained by the dictionary redundancy: having 32 local filters in

D1 (even while using a stride of 2) implies a 8-fold redundancy in the effective dictionary at

this level. This redundancy decreases with the depth (at this least for the current construction),

6All experiments are run on a 16 i7 cores Windows station with a NVIDIA GTX 1080 Ti.
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a) b)

c)

Figure 6.4: ML-CSC model trained on the MNIST dataset. a) The local filters of the dictionary
D1. b) The local filters of the effective dictionary D(2) = D1D2. c) Some of the 1024 local

atoms of the effective dictionary D(3) which, because of the dimensions of the filters and the
strides, are global atoms of size 28× 28.

and at the third layer one has merely 1024 atoms (redundancy of about 1.3, since the signal

dimension is 282).

We can also find the multi-layer representation for real images – essentially solving the

projection problem PMλ
. In Figure 6.5, we depict the multi-layer features γi, i = 1, 2, 3,

obtained with the Algorithm 6.1, that approximate an image y (not included in the training

set). Note that all the representations are notably sparse thanks to the very high sparsity of the

dictionaries D2 and D3. These decompositions (any of them) provide a sparse decomposition of

the number 3 at different scales, resulting in an approximation x̂. Naturally, the quality of the

approximation can be improved by increasing the cardinality of the representations.

6.5.1 Sparse Recovery

The first experiment we explore is that of recovering sparse vectors from corrupted measurements,

in which we will compare the presented ML-CSC Pursuit with the Layered approach from [PRE16].

For the sake of completion and understanding, we will first carry this experiment in a synthetic

setting and then on projected real digits, leveraging the dictionaries obtained in the beginning

of this section.

We begin by constructing a 3 layers “non-convolutional” 7 model for signals of length 200,

with the dictionaries having 250, 300, and 350 atoms, respectively. The first dictionary is

constructed as a random matrix, whereas the remaining ones are composed of sparse atoms with

random supports and a sparsity of 99%. Finally, 500 representations are sampled by drawing

sparse vectors γL, with a target sample sparsity k and normally distributed coefficients. We

generate the signals as x = D(i)γi, and then corrupt them with Gaussian noise (σ = 0.02)

7The non-convolutional case is still a ML-CSC model, in which the signal dimension is the same as the length
of the atoms n, and with a stride of the same magnitude n. We choose this setting for the synthetic experiment
to somewhat favor the results of the layered pursuit approach.
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��
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��

Figure 6.5: Decompositions of an image from MNIST in terms of its nested sparse features γi
and multi-layer convolutional dictionaries Di.

obtaining the measurements y = x(γi) + v.

In order to evaluate our projection approach, we run Algorithm 6.1 employing the Subspace

Pursuit algorithm [DM09] for the sparse coding step, with the oracle target cardinality k. Recall

that once the deepest representations γ̂L have been obtained, the inner ones are simply computed

as γ̂i−1 = Diγ̂i. In the layered approach from [PRE16], on the other hand, the pursuit of

the representations progresses sequentially: first running a pursuit for γ̂1, then employing this

estimate to run another pursuit for γ̂2, etc. In the same spirit, we employ Subspace Pursuit layer

by layer, employing the oracle cardinality of the representation at each stage. The results are

presented in Figure 6.6: at the top we depict the relative `2 error of the recovered representations

(‖γ̂i− γi‖2/‖γi‖2) and, at the bottom, the normalized intersection of the supports [Ela10], both

as a function of the sample cardinality k and the layer depth.

The projection algorithm manages to retrieve the representations γ̂i more accurately than

the layered pursuit, as evidenced by the `2 error and the support recovery. The main reason

behind the difficulty of the layer-by-layer approach is that the entire process relies on the

correct recovery of the first layer representations, γ̂1. If these are not properly estimated (as

evidenced by the bottom-left graph), there is little hope for the recovery of the deeper ones. In

addition, these representations γ1 are the least sparse ones, and so they are expected to be the

most challenging ones to recover. The projection alternative, on the other hand, relies on the

estimation of the deepest γ̂L, which are very sparse. Once these are estimated, the remaining
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Figure 6.6: Recovery of representations from noisy synthetic signals. Top: normalized `2 error
between the estimated and the true representations. Bottom: normalized intersection between

the estimated and the true support of the representations.
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the estimated and the true support of the representations.
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ones are simply computed by propagating them to the shallower layers. Following our analysis

in the Section 6.3.3, if the support of γ̂L is estimated correctly, so will be the support of the

remaining representations γ̂i.

We now turn to deploy the 3 layer convolutional dictionaries for real digits obtained previously.

To this end we take 500 digits from the MNIST dataset and project them on the trained model,

essentially running Algorithm 6.1 and obtaining the representations γi. We then create the noisy

measurements as y = D(i)γi + v, where v is Gaussian noise with σ = 0.02, providing nothing

but noisy digits. We then repeat both pursuit approaches seeking to estimate the underlying

representations, obtaining the results reported in Figure 6.7.

Clearly, this represents a significantly more challenging scenario for the layered approach,

which recovers only a small fraction of the correct support of the sparse vectors. The projection

algorithm, on the other hand, provides accurate estimations with negligible mistakes in the

estimated supports, and very low `2 error. Note that the `2 error has little significance for the

Layered approach, as this algorithm does not manage to find the true supports. The reason for

the significant deterioration in the performance of the Layered algorithm is that this method

actually finds alternative representations γ̂1, of the same sparsity, providing a lower fidelity

term than the projection counterpart for the first layer. However, these estimates γ̂1 do not

necessarily provide a signal in the model, which causes further errors when estimating γ̂2.

6.5.2 Sparse Approximation

A straight forward application for unsupervised learned model is that of approximation: how

well can one approximate or reconstruct a signal given only a few k non-zero values from some

representation? In this subsection, we study the performance of the ML-CSC model for this task

while comparing with related methods, and we present the results in Figure 6.8. The model is

trained on 60K training examples, and the M-term approximation is measured on the remaining

10K testing samples. All of the models are designed with 1K hidden units (or atoms).

Given the close connection of the ML-CSC model to sparse auto-encoders, we present the

results obtained by approximating the signals with sparse autoencoders [Ng11] and k-sparse

autoencoders [MF13]. In particular, the work in [Ng11] trains sparse auto-encoders by penalizing

the KL divergence between the activation distribution of the hidden neurons and that of a

binomial distribution with a certain target activation rate. As such, the resulting activations are

never truly sparse. For this reason, since the M-term approximation is computed by picking

the highest entries in the hidden neurons and setting the remaining ones to zero, this method

exhibits a considerable representation error.

K-sparse auto-encoders perform significantly better, though they are sensitive to the number

of non-zeros used during training. Indeed, if the model is trained with 25 non-zeros per

sample, the model performs well for a similar range of cardinalities. Despite this sensitivity

on training, their performance is remarkable considering the simplicity of the pursuit involved:

the reconstruction is done by computing x̂ = Wγ̂k + b′, where γ̂k is a k-sparse activation (or

feature) obtained by hard thresholding as γ̂k = Hk

[
WTy + b

]
, and where b and b′ are biases
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Figure 6.8: M-term approximation as a function of non-zero coefficients (NNZ) for MNIST
digits, comparing sparse autoencoders [Ng11], k-sparse autoencoders [MF13], trainlets

(OSDL) [SOZE16], and the proposed ML-CSC for models with different filter sparsity levels.
The relative number of parameters is depicted in NavyBlue.

vectors. Note that while a convolutional multi-layer version of this family of autoencoders was

proposed in [MF15], these constructions are trained in stacked manner – i.e., training the first

layer independently, then training the second one to represent the features of the first layer while

introducing pooling operations, and so forth. In this manner, each layer is trained to represent

the (pooled) features from the previous layer, but the entire architecture cannot be trivially

employed for comparison in this problem.

Regarding the ML-CSC, we trained 6 different models by enforcing 6 different levels of

sparsity in the convolutional filters (i.e., different values of the parameters ζi in Algorithm 6.3),

with a fixed target sparsity of k = 10 non-zeros. The sparse coding of the inner-most γ̂3 was

done with the Iterative Hard Thresholding algorithm, in order to guarantee an exact number

of non-zeros. The numbers pointing at the different models indicate the relative amount of

parameters in the model, where 1 corresponds to 282 × 1K parameters required in a standard

autoencoder (this is also the number of parameters in the sparse-autoencoders and k-sparse

autoencoders, without counting the biases). As one can see, the larger the number of parameters,

the lower the representation error the model is able to provide. In particular, the ML-CSC

yields slightly better representation error than that of k-sparse autoencoders, for a wide range

of non-zero values (without the need to train different models for each one) and with 1 and 2

orders of magnitude less parameters.

Since the training of the ML-CSC model can also be understood as a dictionary learning

algorithm, we compare here with the state-of-the-art method of [SOZE16]. For this case, we
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Method Classification Error

Stacked Denoising Autoencoder (3 layers) [VLL+10] 1.28%

k-Sparse Autoencoder (1K units) [MF13] 1.35%

Shallow WTA Autoencoder (2K units) [MF15] 1.20%

Stacked WTA Autoencoder (2K units) [MF15] 1.11%

ML-CSC (1K units) - 2nd Layer Rep. 1.30%

ML-CSC (2K units) - 2nd&3rd Layer Rep. 1.15%

Table 6.1: Unsupervised classification results on MNIST.

trained 1K trainlet atoms with the OSDL algorithm. Note that this comparison is interesting,

as OSDL also provides sparse atoms with reduced number of parameters. For the sake of

comparison, we employed an atom-sparsity that results in 13% of parameters relative to the

total model size (just as one of the trained ML-CSC models), and the sparse coding was done

also with the IHT algorithm. Notably, the performance of this relatively sophisticated dictionary

learning method, which leverages the representation power of a cropped wavelets base dictionary,

is only slightly superior to the proposed ML-CSC.

6.5.3 Unsupervised Classification

Unsupervised trained models are usually employed as feature extractors, and a popular way to

assess the quality of such features is to train a linear classifier on them for a certain classification

task. To this end, we train a model with 3 layers, each containing: 16 (5×5) atoms, 64 (5×5×16)

atoms and 1024 atoms of dimension 5×5×64 (stride of 2) on 60K training samples from MNIST.

Just as for the previous model, the global sparse coding is performed with FISTA and a target

(average) sparsity of 25 non-zeros. Once trained, we compute the representations γ̂i with an

elastic net formulation and non-negativity constraints, before fitting a simple linear classifier on

the obtained features. Employing an elastic-net formulation (by including an `2 regularization

parameter, in addition to the `1 norm) results in slightly denser representations, with improved

classification performance. Similarly, the non-negativity constraint significantly facilitates the

classification by linear classifiers. We compare our results with similar methods under the same

experimental setup, and we depict the results in Table 6.1, reporting the classification error on

the 10K testing samples.

Recall that within the ML-CSC model, all features γi have a very clear meaning: they provide

a sparse representation at a different layer. We can leverage this multi-layer decomposition in a

very natural way within this unsupervised classification framework. We detail the classification

performance achieved by our model in two different scenarios: on the first one we employ the

1K-dimensional features corresponding to the second layer of the ML-CSC model, obtaining

better performance than the equivalent k-sparse autoencoder. In the second case, we add to the

previous features the 1K-dimensional features from the third layer, resulting in a classification

error of 1.15%, comparable to the Stacked Winner Take All (WTA) autoencoder (with the same

number of neurons).
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Lastly, it is worth mentioning that a stacked version of convolutional WTA autoencoder

[MF15] achieve a classification error of 0.48, which provide significantly better results. However,

note that this model is trained with a 2-stage process (training the layers separately) involving

significant pooling operations between the features at different layers. More importantly, the

features computed by this model are 51,200-dimensional (more than an order of magnitude

larger than in the other models) and thus cannot be directly compared to the results reporter

by our method. In principle, similar stacked-constructions that employ pooling could be built

for our model as well, and this remains as part of ongoing work.

6.6 Chapter Conclusion

We have carefully revisited the ML-CSC model and explored the problem of projecting a signal

onto it. In doing so, we have provided new theoretical bounds for the solution of this problem as

well as stability results for practical algorithms, both greedy and convex. The search for signals

within the model led us to propose a simple, yet effective, learning formulation adapting the

dictionaries across the different layers to represent natural images. In particular, we employed the

dictionary sparsity as a proxi for the sparsity of the inner representations, which effectively yields

a model consisting of cascade of sparse convolutional filters. We demonstrated the proposed

approach by learning the model on the MNIST dataset, and studied several practical applications.

The experimental results show that the ML-CSC can indeed provide significant expressiveness

with a very small number of model parameters.

Several question remain open: how should the model be modified to incorporate pooling

operations between the layers? what consequences, both theoretical and practical, would this

have? How should one recast the learning problem in order to address supervised and semi-

supervised learning scenarios? Lastly, we envisage that the analysis provided in this work

will empower the development of better practical and theoretical tools not only for structured

dictionary learning approaches, but to the field of deep learning and machine learning in general.
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6.7 Chapter Appendix

6.7.1 Properties of the ML-CSC model

Lemma 6.2.1: Given the ML-CSC model described by the set of convolutional dictionaries

{Di}Li=1, with filters of spatial dimensions ni and channels mi, any dictionary D(i) = D1D2 . . .Di

is a convolutional dictionary with mi local atoms of dimension neff
i =

∑i
j=1 nj − (i− 1). In other

words, the ML-CSC model is a structured global convolutional model.

Proof. A convolutional dictionary is formally defined as the concatenation of banded circulant

matrices. Consider D1 =
[
C

(1)
1 ,C

(1)
2 , . . . ,C

(1)
m1

]
, where each circulant C

(1)
i ∈ RN×N . Likewise,

one can express D2 =
[
C

(2)
1 ,C

(2)
2 , . . . ,C

(2)
m2

]
, where C

(2)
i ∈ RNm1×N . Then,

D(2) = D1D2 =
[
D1C

(2)
1 ,D1C

(2)
2 , . . . ,D1C

(2)
m2

]
.

Each term D1C
(2)
i is the product of a concatenation of banded circulant matrices and a banded

circulant matrix. Because the atoms in each C
(2)
i have a stride of m1 (the number of filters in

D1) each of these products is in itself a banded circulant matrix. This is illustrated in Figure

6.9, where it becomes clear that the first atom in C
(2)
1 (of length n2m1) linearly combines atoms

from the first n2 blocks of m1 filters in D1 (in this case n2 = 2). These block are simply the

unique set of filters shifted at every position. The second column in C
(2)
1 will do the same for

the next set n2 blocks, starting from the second one, etc.

From the above discussion, D1C
(2)
1 results in a banded circulant matrix of dimension N ×N .

In particular, the band of this matrix is given by the dimension of the filters in the first

dictionary (n1) plus the number of blocks combined by C
(2)
1 minus one. In other words, the

effective dimension of the filters in D1C
(2)
1 is given by neff

2 = n2 + n1 − 1.

The effective dictionary D(2) = D1D2 is simply a concatenation of m2 such banded circulant

matrices. In other words, D(2) is a convolutional dictionary with filters of dimension neff
2 . The

same analysis can be done for the effective dictionary at every layer, D(i), resulting in an effective

dimension of neff
i = ni + neff

i−1 − 1, and so neff
L =

∑L
i=1 ni − (L− 1).

Finally, note that D(i) has Nmi columns, and thus there will be mi local filters in the

effective CSC model.

6.7.2 Another stability result for the PMλ
problem

Theorem 30. (Stability of the solution to the PMλ
problem):

Suppose x(γi) ∈ Mλ is observed through y = x + v, where v is a bounded noise vector,

‖v‖2 ≤ E0, and 8 ‖γi‖s0,∞ = λi <
1
2

(
1 + 1

µ(Di)

)
, for 1 ≤ i ≤ L. Consider the set {γ̂i}Li=1 to be

8The assumption that ‖γi‖s0,∞ = λi can be relaxed to ‖γi‖s0,∞ ≤ λi, with slight modifications of the result.
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Figure 6.9: Illustration of a convolutional dictionary D1 multiplied by one of the circulat

matrices from D2, in this case C
(2)
1 .

the solution of the PMλ
problem. If ‖γL‖s0,∞ < 1

2

(
1 + 1

µ(D(L))

)
then

‖γi − γ̂i‖22 ≤
4E2

0

1− (2‖γL‖s0,∞ − 1)µ(D(L))

L∏
j=i+1

[
1 + (2‖γj‖s0,∞ − 1)µ(Dj)

]
.

Proof. Given that the original signal x satisfies ‖y−x‖2 ≤ E0, the solution to the PMλ
problem,

x̂ must satisfy

‖y − x̂‖2 ≤ ‖y − x‖2 ≤ E0,

as this is the signal which provides a lowest `2 (data-fidelity) term. In addition, ‖γ̂L‖s0,∞ =

λL <
1
2(1 + 1

µ(D(L))
). Therefore, from the same arguments presented in [PSE17b], it follows that

‖γL − γ̂L‖22 ≤
4E2

0

1− (2‖γL‖s0,∞ − 1)µ(D(L))
= E2

L.

Because the solution x̂({γ̂i}) ∈Mλ, then γ̂L−1 = DLγ̂L. Therefore

‖γL−1 − γ̂L−1‖22 = ‖DL(γL − γ̂L)‖22 ≤ (1 + δ2k)‖γL − γ̂L‖22,

where δ2k is the S-RIP of DL with constant 2k = 2‖γL‖s0,∞. This follows from the triangle

inequality of the `0,∞ norm and the fact that, because γ̂L is a solution to the PMλ
problem,

‖γ̂L‖s0,∞ ≤ λL = ‖γL‖s0,∞. The S-RIP can in turn be bounded with the mutual coherence

[PSE17b] as δk ≤ (k − 1)µ(DL), from which one obtains

‖γL−1 − γ̂L−1‖22 ≤ E2
L (1 + (2‖γL‖s0,∞ − 1)µ(DL)).
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From similar arguments, extending this to an arbitrary ith layer,

‖γi − γ̂i‖22 ≤ E2
L

L∏
j=i+1

(1 + (2‖γj‖s0,∞ − 1)µ(Dj)).

For the sake of simplicity, one can relax the above bounds further obtaining that, subject to

the assumptions in Theorem 30,

‖γi − γ̂i‖22 ≤ E2
L 2(L−i).

This follows simply by employing the fact that ‖γi‖s0,∞ < 1
2

(
1 + 1

µ(Di)

)
.

6.7.3 Local stability of the S-RIP

Lemma 6.3.1: Local one-sided near isometry:

If D is a convolutional dictionary satisfying the Stripe-RIP condition with constant δk, then

‖Dγ‖2,p2,∞ ≤ (1 + δk) ‖γ‖2,s2,∞

Proof. Consider the patch-extraction operator Pi from the signal x = Dγ, and Si the operator

that extracts the corresponding stripe from γ such that Pix = ΩSiγ, where Ω is a local stripe

dictionary [PSE17b]. Denote the ith stripe by si = Siγ. Furthermore, denote by S̄i the operator

that extracts the support of si from γ. Clearly, x = DS̄Ti S̄iγ. Note that ‖Pi‖2 = ‖Si‖2 = 1.

Then,

‖Dγ‖p2,∞ = max
i
‖PiDS̄Ti S̄iγ‖2

≤ max
i
‖Pi‖2 ‖DS̄Ti S̄iγ‖2

≤ max
i
‖DS̄Ti ‖2‖S̄iγ‖2

≤ max
i
‖DS̄Ti ‖2 max

j
‖S̄jγ‖2.

Note that

max
j
‖S̄jγ‖2 = max

j
‖Sjγ‖2 = ‖γ‖s2,∞,

as the non-zero entries in S̄jγ and Sjγ are the same. On the other hand, denoting by λmax(·)
the maximal eigenvalue of the matrix in its argument, ‖DS̄Ti ‖2 =

√
λmax

(
S̄iDTDS̄Ti

)
, and if

T = Supp(γ),

λmax
(
S̄iD

TDS̄Ti
)
≤ λmax

(
DT
TDT

)
, (6.8)

because9 S̄iD
TDS̄Ti is a principal sub-matrix of DT

TDT . Thus, also ‖DS̄Ti ‖2 ≤ ‖DT ‖2.

9The inequality in (6.8) can be shown by considering the equivalent expression λmax
(
SiD

T
TDT STi

)
, where the

matrix DT
TDT is real and symmetric, and the matrix Si is semi-orthogonal; i.e. SiS

T
i = I. Thus, from Poincaré

Separation Theorem, λmin
(
DT
TDT

)
≤ λ

(
SiD

T
TDτS

T
i

)
≤ λmax

(
DT
TDT

)
.
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The Stripe-RIP condition, as in Equation (6.3), provides a bound on the square of the

singular values of DT . Indeed, ‖DT ‖22 ≤ (1 + δk), for every T : ‖T ‖s0,∞ = k. Including these in

the above one obtains the desired claim:

‖Dγ‖p2,∞ ≤ max
i
‖DS̄Ti ‖2 max

j
‖S̄jγ‖2 ≤

√
1 + δk‖γ‖s2,∞.

6.7.4 Recovery guarantees for pursuit algorithms

Convex relaxation case

Theorem 28. Stable recovery of the Multi-Layer Pursuit Algorithm in the convex relaxation

case:

Suppose a signal x(γi) ∈ Mλ is contaminated with locally-bounded noise v, resulting in

y = x + v, ‖v‖p2,∞ ≤ ε0. Assume that all representations γi satisfy the N.V.S. property for

the respective dictionaries Di, and that ‖γi‖s0,∞ = λi <
1
2

(
1 + 1

µ(Di)

)
, for 1 ≤ i ≤ L and

‖γL‖s0,∞ = λL ≤ 1
3

(
1 + 1

µ(D(L))

)
. Consider solving the Pursuit stage in Algorithm 6.1 as

γ̂L = arg min
γ
‖y + D(L)γ‖|22 + ζL‖γ‖1,

for ζL = 4ε0, and set γ̂i−1 = Diγ̂i, i = L, . . . , 1. Then, for every 1 ≤ i ≤ L layer,

1. Supp(γ̂i) ⊆ Supp(γi),

2. ‖γ̂i − γi‖
p
2,∞ ≤ εL

L∏
j=i+1

√
3cj
2

,

where εL = 15
2 ε0

√
‖γj‖

p
0,∞ is the error at the last layer, and cj is a coefficient that depends on

the ratio between the local dimensions of the layers, cj =
⌈

2nj−1−1
nj

⌉
.

Proof. Denote ∆i = γ̂i − γi. From [PSE17b] (Theorem 19), the solution γ̂L will satisfy:

1. S(γ̂L) ⊆ S(γL); and

2. ‖∆L‖∞ ≤ 15
2 ε0.

As shown in [PRE16], given the `∞ bound of the representation error, we can bound its `2,∞

norm as well, obtaining

‖∆L‖p2,∞ ≤ ‖∆L‖∞
√
‖∆L‖p0,∞ ≤

15

2
ε0

√
‖γL‖

p
0,∞, (6.9)

because, since S(γ̂L) ⊂ S(γL), ‖∆L‖s0,∞ ≤ ‖γL‖s0,∞. Define εL = 15
2 ε0

√
‖γL‖

p
0,∞.

Recall that the N.V.S. property states that the entries in γ will no cause the support of

the atoms in D cancel each other; i.e., ‖Dγ‖0 = ‖DT ‖0∞ (Definition 27). In other words, this
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provides a bound on the cardinality of the vector resulting from the multiplication of D with

any sparse vector with support T . Concretely, if γ satisfies the N.V.S., then ‖Dγ‖0 ≥ ‖Dγ̂‖0.

Consider now the estimate at the L − 1 layer, obtained as γ̂L−1 = DLγ̂L. Because γL

satisfies the N.V.S. property, and S(γ̂L) ⊆ S(γL), then ‖γ̂L−1‖0 ≤ ‖γL−1‖0, and more so

S(γ̂L−1) ⊆ S(γL−1).

On the other hand, recalling Lemma 6.7.3 and denoting by δλL the Stripe-RIP constant of

the DL dictionary, and because ‖∆L‖s0,∞ ≤ ‖γL‖s0,∞ ≤ λL,

‖∆L−1‖2,p2,∞ = ‖DL∆L‖2,p2,∞ ≤ (1 + δλL)‖∆L‖2,s2,∞.

Notice that by employing the above Lemma, we have bounded the patch-wise `2,∞ norm of

∆L−1 in terms of the stripe-wise `2,∞ of ∆L. Recalling the derivation from [PRE16] (Section

7.1), at each ith layer, a stripe includes up to (2ni−1 − 1)/ni patches. Define ci =
⌈

2ni−1−1
ni

⌉
.

From this, one can bound the square of the `2 norm of a stripe with the norm of the maximal

patch within it - this is true for every stripe, and in particular for the stripe with the maximal

norm. This implies that ‖∆L‖2,s2,∞ ≤ cL‖∆L‖2,p2,∞. Then,

‖∆L−1‖2,p2,∞ ≤ (1 + δk)‖∆L‖2,s2,∞ ≤ (1 + δλL)cL‖∆L‖2,p2,∞.

Employing the result in Eq. (6.9),

‖∆L−1‖2,p2,∞ ≤ (1 + δk)cL‖∆L‖2,p2,∞ ≤ (1 + δk) cL ε
2
L.

We can further bound the Stripe-RIP constant by δk ≤ (k − 1)µ(D) [PSE17b], obtaining

‖∆L−1‖2,p2,∞ ≤ (1 + (‖γL‖s0,∞ − 1)µ(DL)) ε2L cL.

Iterating this analysis for the remaining layers yields

‖γ̂i − γi‖
2,p
2,∞ ≤ ε

2
L

L∏
j=i+1

cj (1 + (‖γj‖s0,∞ − 1)µ(Dj)).

This general result can be relaxed for the sake of simplicity. Indeed, considering that

‖γi‖s0,∞ < 1
2

(
1 + 1

µ(Di)

)
, for 1 ≤ i ≤ L,

1 + (‖γj‖s0,∞ − 1)µ(Dj) < 3/2,

and so

‖γ̂i − γi‖
p
2,∞ ≤ εL

L∏
j=i+1

√
3cj
2
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Greedy case

Theorem 29. Stable recovery of the Multi-Layer Pursuit Algorithm in the greedy case:

Suppose a signal x(γi) ∈Mλ is contaminated with energy-bounded noise v, such that y = x+v,

‖y− x‖2 ≤ E0, and ε0 = ‖v‖P2,∞. Assume that all representations γi satisfy the N.V.S. property

for the respective dictionaries Di, with ‖γi‖s0,∞ = λi <
1
2

(
1 + 1

µ(Di)

)
, for 1 ≤ i ≤ L, and

‖γL‖s0,∞ <
1

2

(
1 +

1

µ(D(L))

)
− 1

µ(D(L))
· ε0
|γminL |

, (6.10)

where γminL is the minimal entry in the support of γL. Consider approximating the solution to

the Pursuit step in Algorithm 6.1 by running Orthogonal Matching Pursuit for ‖γL‖0 iterations.

Then

1. Supp(γ̂i) ⊆ Supp(γi),

2. ‖γ̂i − γi‖22 ≤
E20

1−µ(D(L))(‖γL‖s0,∞−1)

(
3
2

)L−i
.

Proof. Given that γL satisfies Equation (6.10), from [PSE17b] (Theorem 17) one obtains that

‖γ̂L − γL‖22 ≤
E2

0

1− µ(D(L))(‖γL‖s0,∞ − 1)
.

Moreover, if the OMP algorithm is run for ‖γL‖0 iterations, then all the non-zero entries are

recovered, i.e., Supp(γ̂L) = Supp(γL). Therefore, ‖γ̂L − γL‖s0,∞ ≤ ‖γL‖s0,∞ = λL.

Now, let γ̂L−1 = DLγ̂L. Regarding the support of γ̂L−1, because γL satisfies the N.V.S.

property, ‖γ̂L−1‖0 ≤ ‖γL−1‖0. More so, all entries in γ̂L−1 will correspond to non-zero entries

in γL−1. In other words,

Supp(γ̂L−1) ⊆ Supp(γL−1).

Consider now the error at the L − 1 layer, ‖γL−1 − γ̂L−1‖22. Since ‖γL−1 − γ̂L−1‖s0,∞ ≤
‖γL−1‖s0,∞, we can bound this error in terms of the Stripe RIP:

‖γL−1 − γ̂L−1‖22 = ‖DL(γL − γ̂L)‖22 ≤ (1 + δλL)‖γL − γ̂L‖22,

We can further bound the SRIP constant as δk ≤ (k − 1)µ(D), from which one obtains

‖γ̂L−1 − γL−1‖22 ≤
E2

0

1− µ(D(L))(‖γL‖s0,∞ − 1)
(1 + (‖γL‖s0,∞ − 1)µ(DL)).

From similar arguments, one obtains analogous claims for any ith layer; i.e.,

‖γ̂i − γi‖22 ≤
E2

0

1− µ(D(L))(‖γL‖s0,∞ − 1)

L∏
j=i+1

(1 + (‖γj‖s0,∞ − 1)µ(Dj)).

This bound can be further relaxed for the sake of simplicity. Because ‖γi‖s0,∞ < 1
2

(
1 + 1

µ(Di)

)
,
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for 1 ≤ i ≤ L, then (1 + (‖γL‖s0,∞ − 1)µ(DL)) < 3/2, and so

‖γ̂i − γi‖22 ≤
E2

0

1− µ(D(L))(‖γL‖s0,∞ − 1)

(
3

2

)L−i
.

6.7.5 Sparse Dictionaries

Lemma 6.4.1: Dictionary Sparsity Condition

Consider the ML-CSC model Mλ described by the the dictionaries {D1}Li=1 and the layer-wise

`0,∞-sparsity levels λ1, λ2, . . . , λL. Given γL : ‖γL‖s0,∞ ≤ λL and constants ci =
⌈

2ni−1−1
ni

⌉
, the

signal x = D(L)γL ∈Mλ if

‖Di‖0 ≤
λi−1

λici
, ∀ 1 < i ≤ L.

Proof. This lemma can be proven simply by considering that the patch-wise `0,∞ of the repre-

sentation γL−1 can be bounded by ‖γL−1‖
p
0,∞ ≤ ‖DL‖0‖γL‖s0,∞. Thus, if ‖DL‖0 ≤ λL−1/λL

and ‖γL‖s0,∞ ≤ λL, then ‖γL−1‖
p
0,∞ ≤ λL−1. Recalling the argument in [PRE16] (Section

7.1), a stripe from the ith layer includes up to ci = d(2ni−1 − 1)/nie patches. Therefore,

‖γL−1‖s0,∞ ≤ cL‖γL−1‖
p
0,∞, and so γL−1 will satisfy its corresponding sparsity constraint if

‖DL‖0 ≤ λL−1/(cLλL). Iterating this argument for the remaining layers proves the above lemma.
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Chapter 7

Conclusion

In the Introduction, right after commenting on the limitations of local-based sparse modeling

approaches, we stated three questions that were to guide the development of this work. Let us

now review where each of these points has taken us:

1. How can one solve, or at least alleviate, the artifacts that result from employing a local

sparse paradigm when restoring global images?

A central aspect of local sparse processing (any many other local restorations methods)

is that each local patch is estimated while disregarding its global context. Based on

this observation, we proposed a multi-scale approach that provides local estimates but of

different effective sizes, allowing to consider progressively more global information and

resulting in a remarkable improvement in visual quality. We further explored the concept

of the Expected Patch Log Likelihood, which states that the prior (or model) should be

enforced on patches from the reconstructed image, and not just on the intermediate ones.

Recognizing that this decreases the lack of agreement between overlapping patches, we

borrowed this idea and formulated it in terms of a sparse enforcing prior, resulting in

an improved restoration algorithm. We further explored global regularization techniques

by leveraging the Laplacian obtained from a popular denoising operator. In this case

as well, we corroborated that this global force improves the performance of patch-based

approaches.

2. How can one deploy sparse-enforcing ideas to treat global signals or images?

As an alternative to solving the issues of patch-based approaches, we explored the path of

learning global sparse models for natural images. For this to feasible, one needs the model

to be computationally efficient to apply. In addition, adding constraints to the model allows

to lessen the curse of dimensionality and facilitates learning. This led us to employ the

double sparsity model, not without first boosting its representation power by proposing a

new cropped wavelets dictionary that avoids edge effects. By suggesting an online learning

algorithm, we demonstrated that (i) performance can be gained by employing larger

patches given a suitable model and learning algorithm, (ii) the proposed approach scales
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and performs better than competing methods when addressing the dictionary learning

problem in higher dimensions, and (iii) when focusing on a particular class of images, our

approach can provide solutions to problems that local approaches simply can not address.

3. What is the global model imposed on signals while working under a local-sparsity frame-

work?

This question led us to the field of Convolutional Sparse Coding, enforcing a global structure

while assuring a local and shift-invariant sparse model – only to find that traditional results

in sparse representation theory are simply not applicable to this case! We thus proposed

a novel theoretical analysis based on a local sparsity measure, enabling us to provide

guarantees for the pursuit problems in the convolutional setting as well as claims for

practical (and popular) algorithms that approximate the solution to these problems. This

local treatment of global pursuits was not only fruitful in terms of theoretical results,

but it also enabled us to propose sparse coding and learning algorithms leveraging local

convolutional entities – slices – yielding better and faster methods.

After having explored these questions, and motivated by the acute connection between deep

learning and CSC, we undertook the study of the Multi-Layer Convolutional Sparse Coding

model. Interestingly, this last work contains ingredients from all the points above: it provides

local estimates that contribute coherently to increasingly larger structures, at different scales, in

a convolutional manner and resulting in a global but constrained sparse model. The proposed

projection approached allowed us to undertake the pursuit of signals in the model, and to

introduce the first known method to train the ML-CSC model from real data.

7.1 Open Questions

All the above works, while providing solutions to the initial issues that motivated them, also

raised further questions and working directions that remain unexplored. Before concluding, we

comment on some of these points.

From the results presented in Chapter 3, one can understand that different content in natural

images should receive a different restoration treatment. This can be clearly seen by considering

the denoising problem with patches of increasing sizes: while large and smooth regions (like

lakes and sky areas) are finely recovered by employing large patches (either with Trainlets or the

Fused K-SVD algorithm), this approach generally comes with a decrease in the capabilities of

representing fine details or texture. From this observation it naturally follows one could benefit

from employing, for example, different patch sizes in different image regions. We now have a

better undertanding of how one should treat larger patches in natural images, so how could one

device an algorithm that optimally combines different sized patches and adaptively employs

certain scales that allow for the best restoration for each region? Such a algorithm, not only

for image denoising for any restoration task, would clearly push the performance of current

approaches.
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The work presented in Chapter 4 showed that dictionary learning can be employed to higher

dimensional signals. In particular, this approach is mostly useful when addressing signals

belonging to the same class – as demonstrated for the problem of face image inpainting. There

are many other problems in image and signal processing that could benefit from a global model

even for a reduced type of images. Image compression is one such application, and compression

of face images bears special importance due to the plethora of visual comunication tools in social

media. It would be interesting and promising to consider algorithms that would leverage these

global models to suggest novel and better compression algorithms.

All the analysis that we presented in Chapter 5 (and 6, for that matter) is based on worst-case

assumptions, and it is therefore pesimistic in the imposed conditions. Extending this analysis

to a probabilistic setting, in which one could guarantee recovery of sparse vectors with high

probability under more permissive conditions would be interesting and (most importantly) useful

from a practical point of view. Moreover, noting that the CSC framework addressed specially

the pursuit of global images, one can foresee extending the theory of Compressed Sensing to

the convolutional setting based on the same local analysis presenting in our work. This path is

likely to extend known bounds and improve the performance of current sensing systems, and the

applications that come with them.

The last chapter, which studies the ML-CSC model, is perhaps the one that represents the

most interesting working directions. Deep CNNs where shown to be tightly connected to sparse

representations, essentially performing a pursuit for the sparse features maps at every forward

pass iteration. However, what is the truly underlying connection between sparsity and general

machine learning? While we have leveraged the importance of sparse representations in learning

generative synthesis models, to what extent do other problems, such as classification, depend

on sparsity? In fact, recalling the last experiment for the ML-CSC model for unsupervised

classification, the computed features were not very sparse. How do current models and theories

explain this phenomenon?

The DCPEλ problem formulation is the most general way to pose the pursuit of the multi-layer

representations. By restricting ourselves to the projection formulation, we have made the study

of the ML-CSC model simpler and better posed, though departing from the algorithms and

models related to deep learning. For instance, one of the arguably most important properties of

modern deep networks is their invariance to different sources of nuisance in the input data. The

ML-CSC is a formal synthesis model, which is all but invariant: it is covariant! While this is a

desirable property in some applications (like detection), it might be detrimental in others (like

classification). How could we generalize the ML-CSC model to incorporate, in a principled way,

invariance to shift, deformation, or even color? This would compel the study of radically new,

and likely more flexible, generative models, which will certainly expand the practical capabilities

of sparse modeling methods in signal and image processing.
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גרסה ננתח עמוקה. ללמידה הקונבולוציוני הדלילות מודל של הקשר על נעמוד זה חיבור של האחרון בחלקו

עומק. שכבות לכמה הקונבולוציוני הדלילות מודל של הרכבה על מבוססת זו הדלילות, מודל של שכבות מרובת

הדליל. הרב־השכבתי למודל השייך סיגנל של הדלילים הייצוגים סט את למצוא שביכולתו אלגוריתם נציע

בהשוואה יותר טובים מחסמי־יציבות נהנה וזה הנ''ל, המודל על הנתון האות את להטיל מציע זה אלגוריתם

המדובר, המודל את המרכיבים הקונבולוציה מילוני לאימון שיטה נפתח לכך, בנוסף מתחרים. לאלגוריתמים

מגוונים. וביישומים אמיתיים אותות על המוצעת השיטה את נדגים השונות. העומק לשכבות מתאימים אלו

שבה טלאים של מקומי לעיבוד הגישה מינוף תוך גלובליות, בעיות עם להתמודדות שונות דרכים מתאר זה חיבור

מעשיים פתרונות חדשים, אלגוריתמים של מגוון הם זה מחקר של התוצרים הדלילים. הייצוגים מודל מככב

הבא הדור את ויעשירו יעצימו ומאמין, מקווה אני אשר, תאורטיות ותוצאות חדשניים מודלים שונות, לבעיות

לאותות. מתמטיים מודלים של
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תקציר

ומתקדמים חדשים אלגוריתמים של באבולוציה מרכזי גורם הם אותות של מתמטיים מודלים רבות שנים מזה

הנשען דלילים, ייצוגים שנקרא במודל עוסק זה מחקר מכונה. ולמידת ותמונות אותות עיבוד של בתחום יותר

הנקראים הדלילות), (מכאן בסיס איברי מעט של לינארית כקומבינציה טבעיים אותות להציג שניתן האמונה על

סט מציאת של בבעיה עסקו רבות עבודות האחרון בעשור מילון. הנקראת מטריצה מתוך הנלקחים אטומים,

המודל) את גם (ולכן המילון את להתאים שונות ובשיטות נתון, אות מיטבי באופן מייצג אשר אטומים של דליל

רבים, בתחומים מרהיבות לתוצאות והובילה זה מודל את העצימה המילון אימון בעיית אותות. של רחב למגוון

בתחום נוספות ובעיות סיווג זיהוי, כמו מורכבות משימות דרך ותמונות, אותות בעיבוד שחזור מבעיות החל

מכונה. למידת

השימוש לרוב גבוה מממד אותות לעבד בבואנו המילון, אימון בבעיית שמקורם וקשיים חישוביים אילוצים בשל

רבים, יתרונות יש זו לגישה הגלובלי. האות מתוך הנלקחים קטנים טלאים על מתבצע הדלילים הייצוגים במודל

נמוך מממד בעיות תתי עם התמודדות דרך גלובליות בעיות של פתרונן את לקרב במיוחד יעילה דרך זו הרי

של השערוכים בין התאמות באי מתבטא בלבד מקומיות בעיות של הפתרון זאת, עם יחד משמעותי. באופן

המעשי בפן הן ביטוי לידי בא וזה הלוקאלי־גלובלי'', ''הפער זו לתופעה קוראים אנו לזה. זה הקשורים טלאים

על זה, פער עם להתמודדות מגוונות דרכים מציעים אנו זה מחקר של הראשון בחלקו התאורטי. בפן והן

לפלסיאן. ורגולריזצית EPLL כדוגמת גלובליות רגולריזציה ושיטות רב־רזולוציוני עיבוד של בכלים שימוש ידי

פיתוח ידי על בכך, הכרוכים והחסרונות טלאים של מקומי בעיבוד הצורך את עוקפים אנו העבודה של בהמשכה

המסורתי, הדלילות מודל של וריאציה על נשען אנו כך, לצורך גבוה. מממד לאותות מילון ללמוד שיטה של

אותנו תוביל זו חדשנית גישה .cropped wavelets במילון משתמש וזה הכפול, הדלילות מודל נקראת אשר

נתונים. קלט לאותות המותאמים גבוה מממד אטומים לאמן המסוגל Trainlets הנקרא מילון לאימון לאלגוריתם

להתמודד מאפשרת גם אלא המילון, אימון בעיית בפתרון בעולם מהטובים לביצועים מובילה רק לא זו גישה

אטומים ללמוד המסוגלות המקומיות השיטות של המוגבלות היכולות עקב בפננו חסומות שהיו משימות עם

בלבד. נמוך מממד

(המפתיעה התשובה שהוא ונראה הקונבולוציוני הדלילים הייצוגים במודל עוסקים אנו זה, מחקר של השני בחלקו

באנליזה מגובה אינו כשהוא הובא אך האחרונות, בשנים הוצע זה מודל הלוקאלי־גלובלי. לפער מה) במידת

הקלאסי הדלילים הייצוגים מודל של בהקשר שפותחו התאורטיים מהכלים נכבד חלק נרחיב אנו תאורטית.

תוך אלו וכל האות, של המוצלח שחזורו ואת הבעיה יציבות הפתרון, יחידות את ונוכיח הקונבולוציוני, למקרה

על מתבססות אשר עבודות של שפע מצדיקה המוצעת התאוריה אחד, מצד דלילות. של מקומי במדד שימוש

אות המייצגים האטומים סט למציאת חדשים אלגוריתמים של לפיתוח מובילה שלנו הגישה שני, מצד זה. מודל

את נאמנה לשרת הבטחה תוך טלאים, על מקומיות פעולות ידי על מתבצע זאת כל כאשר המילון, ולימוד נתון

המדובר. הגלובלי המודל
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השראה מעורר וזה רגילה, בלתי בצורה לי ומסייע תומך הוא חדשות. תגליות אחר החיפוש הוא מרתק כמה

אלו. כל עבור תודה אסיר אהיה לעולם איתו. לעבוד

לי שהקנו מה כל על האחרונה, מהעת ואלו הותיקים הרחוקים, ואלו הקרובים לחברי, להודות רוצה אני

בועז, מהם: וללמוד עימם פעולה לשתף שזכיתי לאלו מיוחדת תודות ובתמיכתם. המחשבה מלאת בעצתם

והמעבדה הפקולטה לחברי להודות רוצה אני יחד. לעבוד להמשיך שנוכל מקווה אני - דימה יניב, ורדן, חויאר,

נדב כץ, יאנה יבנה, עירד טלמון, רונן ציבולבסקי, מיכאל במיוחד: לי עזרה האחרונות השנים לאורך שתמיכתם

כאן. לעבוד וזוכים שזכו אלו לכל בפז תסולא לא עבודתכם חשיבות קליינר: ואנה פלני תום טולדו,

השמחים אלו את עימי וחגגה קשים ברגעים בי תמכה אשר היידי, שלי, האוהבת הזוג לבת מיוחדות תודות

ההרפתקאות ומלא המרתק המרגש, המסע של הדרך תחילת רק וזוהי זה, לדוקטורט הודות אותך הכרתי יותר.

הראשונים צעדי על והשפעתם השראתם הדרכתם, על ,(UNER) LSyDNL ממעבדת לחברי להודות ברצוני שלנו.

בפרט. וכחוקר בכלל באקדמיה

תמיד אשר ומרגה, אלברטו להורי, למשפחתי: המיוחדת תודתי את להביע רוצה אני חביבים, אחרונים

לא לי להזכיר מספיק חכם היה תמיד אשר אריאל, ולאחי, ולהבין, לחקור תשובות, אחר לחפש אותי עודדו

לכולכם. מוקדם הזה המחקר מהדרך. ולהנות לחייך להפסיק

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני
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המחשב. למדעי בפקולטה אלעד, מיכאל פרופסור של בהנחייתו בוצע המחקר

במהלך ובכתבי־עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק

הינן: ביותר העדכניות גרסאותיהם אשר המחבר, של הדוקטורט מחקר תקופת
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תודות

תודה. אסיר אני כך ועל אפשרי, היה לא זה עבודות מקבץ לי ויקרים רבים אנשים לולא

"אומנות כתב, דורן ואן מארק אלעד. מיכאל פרופ' שלי, למנחה ליבי ממעמקי להודות רוצה אני ראשית,

עד ומראה מייעץ, מסביר, עוזר, תמיד מדהים: מורה הוא מיקי תגליות." בגילוי לסייע האומנות היא ההוראה
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מבוססי מודלים של ללוקאלי גלובלי מתיאור
דלילות

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

לפילוסופיה דוקטור

סולם ג'רמיאס

לישראל טכנולוגי מכון – הטכניון לסנט הוגש

2017 נובמבר חיפה תשע''ח בחשון ה'
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