Selected invited talks and lectures. For publications, see the Publications page.
  2025
  
  
    
      Foundations of Interpretable AI with Shapley Values
      
        ICCV 2025
         · Tutorial
         · Oct 2025
      
      
      
        ML TrustworthinessML Interpretability
      
      
        
        
        
        
        
        
          
        
      
     
  
    
      Tutorial: Computational Inverse Problems
      
        Plurinational Bayes
         · Bogota, Colombia
         · Oct 2025
      
      
      
        Inverse ProblemsBiomedical Imaging
      
      
        
        
        
        
        
        
          
        
      
     
  
    
      Machine learning interpretability to study biology?
      
        Institute for Computational Medicine
         · JHU
         · Sep 2025
      
      
      
        ML InterpretabilityBiomarker DiscoveryBiomedical Imaging
      
      
        
        
        
        
        
        
          
        
      
     
  
    
      Foundations of Interpretable AI with Shapley Values
      
        CVPR 2025
         · Tutorial
         · Jul 2025
      
      
      
        ML TrustworthinessML Interpretability
      
      
        
        
        
        
        
        
          
        
      
     
  
    
      Modern problems in trustworthy medical imaging
      
        Medtronic
         · Minneapolis, MN
         · Jun 2025
      
      
      
        ML TrustworthinessBiomedical ImagingML Interpretability
      
      
        
        
        
        
        
        
          
        
      
     
  
    
      From data to insights: trustworthy methods for modern biomedical imaging
      
        Penn ASSET Seminar
         · University of Pennsylvania
         · Mar 2025
      
      
      
        Inverse ProblemsBiomedical ImagingML Trustworthiness
      
      
        
        
        
        
        
        
          
        
      
     
  
  2024
  
  
    
      Testing semantic importance via betting
      
        IMS International Conference on Statistics and Data Science (ICSDS)
         · Nice, Fr
         · Dec 2024
      
      
      
        ML TrustworthinessTheory
      
      
        
        
        
        
        
        
          
        
      
     
  
    
      What has my model learned?
      
        University of Michigan, EE seminar series
         · Ann Arbor, MI
         · Oct 2024
      
      
      
        ML TrustworthinessInverse ProblemsBiomedical Imaging
      
      
        
        
        
        
        
        
          
        
      
     
  
    
      Yes, my network works! But.. what did it learn?
      
        Mathematical and Scientific Foudnations of Deep Learning, Annual Meeting
         · SIMONS Founations, NYC
         · Sep 2024
      
      
      
        ML TrustworthinessInverse ProblemsML Interpretability
      
      
        
        
        
        
        
        
          
        
      
     
  
    
      Yes, my network works! But.. what did it learn?
      
        Mathematics of Deep Learning, BIRS Casa Matemática Oaxaca
         · Oaxaca, MX
         · Sep 2024
      
      
      
        ML TrustworthinessInverse ProblemsTheory
      
      
        
        
        
        
        
        
          
        
      
     
  
    
      Imaging, Data and Learning: Challenges in biomedical data science
      
        Hariri Institute at Boston University
         · Boston, MA
         · Apr 2024
      
      
      
        Biomedical ImagingML InterpretabilityML Trustworthiness
      
      
        
        
        
        
        
        
          
        
      
     
  
  2023
  
  
    
      Modern Challenges in Biomedical Imaging
      
        Annual symposium of IBBS, Hopkins
         · Baltimore, MD
         · Nov 2023
      
      
      
        Biomedical ImagingML InterpretabilityML Trustworthiness
      
      
        
        
        
        
        
        
          
        
      
     
  
    
      Understanding Deep Nets: Sparse Local Lipschitz functions and Learned Proximal Networks
      
        SILO (UW–Madison) and TTIC (Chicago)
         · Madison, WI; Chicago, IL
         · Nov 2023
      
      
      
        TheoryML Generalization
      
      
        
        
        
        
        
        
          
        
      
     
  
    
      Controlling for fairness with proxy sensitive attributes
      
        Workshop on Algorithms, Fairness and Equity at SLMath (MSRI)
         · Berkeley, CA
         · Sep 2023
      
      
      
        ML Trustworthiness
      
      
        
        
        
        
        
        
          
        
      
     
  
    
      Estimating and controlling for fairness via sensitive attribute predictors
      
        MSRI (Berkeley)
         · Berkeley, CA
         · Aug 2023
      
      
      
        Biomedical ImagingML Trustworthiness
      
      
        
        
        
        
        
        
          
        
      
     
  
  2022
  
  
    
      Overparametrized and Robust Sparse Models
      
        ICCHA 2022
         · Buenos Aires, AR
         · Sep 2022
      
      
      
        TheoryML Generalization
      
      
        
        
        
        
        
        
          
        
      
     
  
    
      Responsible ML: Interpretable and fair machine learning models
      
        sinc(i), Argentina
         · Argentina
         · Aug 2022
      
      
      
        ML Trustworthiness
      
      
        
        
        
        
        
        
          
        
      
     
  
  2020
  
  
    
      Overparameterized and Adversarially Robust Sparse Models
      
        JHU CS Seminar
         · Baltimore, MD
         · Oct 2020
      
      
      
        TheoryML Generalization
      
      
        
        
        
        
        
        
          
        
      
     
  
  2018
  
  
    
      Invited talk
      
        Workshop: Integration of Deep Learning Theories (NeurIPS’18)
         · 
         · Dec 2018
      
      
      
      
        
        
        
        
        
        
          
        
      
     
  
    
      Convolutional Networks as Sparse Enforcing Algorithms
      
        Invited lecture at Rene Vidal’s course on Mathematics of Deep Learning (JHU)
         · Baltimore, MD
         · Nov 2018
      
      
      
      
        
        
        
        
        
        
          
        
      
     
  
  2017
  
  
    
      From Shallow to Deep Sparsity with Convolutional Networks
      
        CoSIP Intense Course on Deep Learning (TU Berlin)
         · Berlin, DE
         · Dec 2017