Selected invited talks and lectures. For publications, see the Publications page.

2025
Foundations of Interpretable AI with Shapley Values
ICCV 2025 · Tutorial · Oct 2025
ML TrustworthinessML Interpretability
Tutorial: Computational Inverse Problems
Plurinational Bayes · Bogota, Colombia · Oct 2025
Inverse ProblemsBiomedical Imaging
Machine learning interpretability to study biology?
Institute for Computational Medicine · JHU · Sep 2025
ML InterpretabilityBiomarker DiscoveryBiomedical Imaging
Foundations of Interpretable AI with Shapley Values
CVPR 2025 · Tutorial · Jul 2025
ML TrustworthinessML Interpretability
Modern problems in trustworthy medical imaging
Medtronic · Minneapolis, MN · Jun 2025
ML TrustworthinessBiomedical ImagingML Interpretability
From data to insights: trustworthy methods for modern biomedical imaging
Penn ASSET Seminar · University of Pennsylvania · Mar 2025
Inverse ProblemsBiomedical ImagingML Trustworthiness
2024
Testing semantic importance via betting
IMS International Conference on Statistics and Data Science (ICSDS) · Nice, Fr · Dec 2024
ML TrustworthinessTheory
What has my model learned?
University of Michigan, EE seminar series · Ann Arbor, MI · Oct 2024
ML TrustworthinessInverse ProblemsBiomedical Imaging
Yes, my network works! But.. what did it learn?
Mathematical and Scientific Foudnations of Deep Learning, Annual Meeting · SIMONS Founations, NYC · Sep 2024
ML TrustworthinessInverse ProblemsML Interpretability
Yes, my network works! But.. what did it learn?
Mathematics of Deep Learning, BIRS Casa Matemática Oaxaca · Oaxaca, MX · Sep 2024
ML TrustworthinessInverse ProblemsTheory
Imaging, Data and Learning: Challenges in biomedical data science
Hariri Institute at Boston University · Boston, MA · Apr 2024
Biomedical ImagingML InterpretabilityML Trustworthiness
2023
Modern Challenges in Biomedical Imaging
Annual symposium of IBBS, Hopkins · Baltimore, MD · Nov 2023
Biomedical ImagingML InterpretabilityML Trustworthiness
Understanding Deep Nets: Sparse Local Lipschitz functions and Learned Proximal Networks
SILO (UW–Madison) and TTIC (Chicago) · Madison, WI; Chicago, IL · Nov 2023
TheoryML Generalization
Controlling for fairness with proxy sensitive attributes
Workshop on Algorithms, Fairness and Equity at SLMath (MSRI) · Berkeley, CA · Sep 2023
ML Trustworthiness
Estimating and controlling for fairness via sensitive attribute predictors
MSRI (Berkeley) · Berkeley, CA · Aug 2023
Biomedical ImagingML Trustworthiness
2022
Overparametrized and Robust Sparse Models
ICCHA 2022 · Buenos Aires, AR · Sep 2022
TheoryML Generalization
Responsible ML: Interpretable and fair machine learning models
sinc(i), Argentina · Argentina · Aug 2022
ML Trustworthiness
2020
Overparameterized and Adversarially Robust Sparse Models
JHU CS Seminar · Baltimore, MD · Oct 2020
TheoryML Generalization
2018
Invited talk
Workshop: Integration of Deep Learning Theories (NeurIPS’18) · · Dec 2018
Convolutional Networks as Sparse Enforcing Algorithms
Invited lecture at Rene Vidal’s course on Mathematics of Deep Learning (JHU) · Baltimore, MD · Nov 2018
2017
From Shallow to Deep Sparsity with Convolutional Networks
CoSIP Intense Course on Deep Learning (TU Berlin) · Berlin, DE · Dec 2017